Advertisement

Smoothed Aggregation Spectral Element Agglomeration AMG: SA-ρAMGe

  • Marian Brezina
  • Panayot S. Vassilevski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7116)

Abstract

A two–level smoothed aggregation (or SA) scheme with tentative coarse space constructed by spectral element agglomeration method is shown to provide weak–approximation property in a weighted L 2–norm. The resulting method utilizing efficient (e.g., polynomial) smoothers is shown to have convergence factor independent of both the coarse and fine–grid mesh–sizes, as well as, to be independent of the contrast (i.e., possible large jumps in the PDE coefficient) for second order elliptic problems discretized on general unstructured meshes. The method allows for multilevel extensions. Presented numerical experiments exhibit behavior in agreement with the developed theory.

Keywords

Coarse Level Lawrence Livermore National Laboratory Large Jump Convergence Factor Coarse Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [ABHT]
    Adams, M., Brezina, M., Hu, J., Tuminaro, R.: Parallel multigrid smoothing: polynomial versus Gauss–Seidel. Journal of Computational Physics 188, 593–610 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  2. [BHMV]
    Brezina, M., Heberton, C., Mandel, J., Vaněk, P.: An iterative method with convergence rate chosen a priori, UCD CCM Report 140 (1999), http://www-math.cudenver.edu/~jmandel/papers/
  3. [BVV]
    Brezina, M., Vaněk, P., Vassilevski, P.S.: An improved convergence analysis of smoothed aggregation algebraic multigrid. Numerical Linear Algebra with Applications (2011)Google Scholar
  4. [ρAMGi]
    Chartier, T., Falgout, R., Henson, V.E., Jones, J., Manteuffel, T., McCormick, S., Ruge, J., Vassilevski, P.S.: Spectral AMGe (ρAMGe). SIAM J. Scientific Computing 25, 1–26 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  5. [ρAMGii]
    Chartier, T., Falgout, R., Henson, V.E., Jones, J., Manteuffel, T., McCormick, S., Ruge, J., Vassilevski, P.S.: Spectral element agglomerate AMGe. In: Domain Decomposition Methods in Science and Engineering XVI. Lecture Notes in Computational Science and Engineering, vol. 55, pp. 515–524. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. [GE10]
    Galvis, J., Efendiev, Y.: Domain decomposition preconditioners for multiscale flows in high-contrast media. Multiscale Modeling and Simulation 8, 1461–1483 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  7. [LV08]
    Lashuk, I., Vassilevski, P.S.: On some versions of the element agglomeration AMGe method. Numerical Linear Algebra with Applications 15, 595–620 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  8. [SVZ]
    Scheichl, R., Vassilevski, P.S., Zikatanov, L.T.: Weak approximation properties of elliptic projections with functional constraints, Available as LLNL Report LLNL-JRNL-468811, February 3 (2011)Google Scholar
  9. [VBT]
    Vaněk, P., Brezina, M., Tezaur, R.: Two-grid method for elasticity on unstructured meshes. SIAM Journal on Scientific Computing 21(3), 900–923 (1999)MathSciNetCrossRefGoogle Scholar
  10. [Va08]
    Vassilevski, P.S.: Multilevel Block Factorization Preconditioners, Matrix-based Analysis and Algorithms for Solving Finite Element Equations, p. 514. Springer, New York (2008)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Marian Brezina
    • 1
  • Panayot S. Vassilevski
    • 2
  1. 1.Department of Applied MathematicsUniversity of Colorado at BoulderBoulderU.S.A.
  2. 2.Center for Applied Scientific ComputingLawrence Livermore National LaboratoryLivermoreU.S.A.

Personalised recommendations