Complete Characterization of Near-Optimal Sequences for the Two-Machine Flow Shop Scheduling Problem

  • Jean-Charles Billaut
  • Emmanuel Hebrard
  • Pierre Lopez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7298)


In a two-machine flow shop scheduling problem, the set of ε-approximate sequences (i.e., solutions within a factor 1 + ε of the optimal) can be mapped to the vertices of a permutation lattice.

We introduce two approaches, based on properties derived from the analysis of permutation lattices, for characterizing large sets of near-optimal solutions. In the first approach, we look for a sequence of minimum level in the lattice, since this solution is likely to cover many optimal or near-optimal solutions. In the second approach, we look for all sequences of minimal level, thus covering all ε-approximate sequences.

Integer linear programming and constraint programming models are first proposed to solve the former problem. For the latter problem, a direct exploration of the lattice, traversing it by a simple tree search procedure, is proposed. Computational experiments are given to evaluate these methods and to illustrate the interest and the limits of such approaches.


Schedule Problem Integer Linear Program Constraint Programming Minimal Sequence Integer Linear Program Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aloulou, M.A., Artigues, C.: Worst-Case Evaluation of Flexible Solutions in Disjunctive Scheduling Problems. In: Gervasi, O., Gavrilova, M.L. (eds.) ICCSA 2007, Part III. LNCS, vol. 4707, pp. 1027–1036. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Artigues, C., Billaut, J.-C., Esswein, C.: Maximization of solution flexibility for robust shop scheduling. European Journal of Operational Research 165(2), 314–328 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Artigues, C., Roubellat, F., Billaut, J.-C.: Characterization of a set of schedules in a resource-constrained multi-project scheduling problem with multiple modes. International Journal of Industrial Engineering 6(2), 112–122 (1999)Google Scholar
  4. 4.
    Bailleux, O., Marquis, P.: DISTANCE-SAT: Complexity and Algorithms. In: AAAI, pp. 642–647 (1999)Google Scholar
  5. 5.
    Beck, J.C.: Solution-Guided Multi-Point Constructive Search for Job Shop Scheduling. JAIR 29, 49–77 (2007)zbMATHGoogle Scholar
  6. 6.
    Bennett, M., Birkhoff, G.: Two families of Newman lattices. Algebra Universalis 32(1), 115–144 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Billaut, J.-C., Lopez, P.: Enumeration of all optimal sequences in the two-machine flowshop. In: Computational Engineering in Systems Applications (CESA 1998), Symposium on Industrial and Manufacturing Systems, IMACS / IEEE-SMC, Hammamet, Tunisie, pp. 378–382 (April 1998)Google Scholar
  8. 8.
    Billaut, J.-C., Lopez, P.: Characterization of all rho-approximated sequences for some scheduling problems. In: Emerging Technologies and Factory Automation (ETFA 2011), Toulouse (September 2011)Google Scholar
  9. 9.
    Billaut, J.-C., Moukrim, A., Sanlaville, E. (eds.): Scheduling with Flexibility and Robustness. ISTE Ltd., Wiley, London (2008)Google Scholar
  10. 10.
    Billaut, J.-C., Roubellat, F.: A new method for workshop real time scheduling. International Journal of Production Research 34(6), 1555–1579 (1996)zbMATHCrossRefGoogle Scholar
  11. 11.
    Bouquard, J.-L., Lenté, C., Billaut, J.-C.: Application of an optimization problem in max-plus algebra to scheduling problems. Discrete Applied Mathematics 154(15), 2041–2238 (2006)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting Systematic Search by Weighting Constraints. In: ECAI, pp. 482–486 (2004)Google Scholar
  13. 13.
    Bowman, V.: Permutation polyhedra. SIAM Journal on Applied Mathematics 22(4), 580–589 (1972)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Briand, C., Huguet, M.-J., La, H.T., Lopez, P.: Constraint-based approaches for robust scheduling. In: Scheduling with Flexibility and Robustness, pp. 199–226. ISTE Ltd., Wiley (2008)Google Scholar
  15. 15.
    Briand, C., La, H.T., Erschler, J.: A robust approach for the single machine scheduling problem. Journal of Scheduling 10(3), 209–221 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Brightwell, G., Winkler, P.: Counting linear extensions. Order 8, 225–242 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Erschler, J., Fontan, G., Mercé, C., Roubellat, F.: A new dominance concept in scheduling n jobs on a single machine with ready times and due dates. Operations Research 31, 114–127 (1983)zbMATHCrossRefGoogle Scholar
  18. 18.
    Grimes, D., Hebrard, E.: Job Shop Scheduling with Setup Times and Maximal Time-Lags: A Simple Constraint Programming Approach. In: Lodi, A., Milano, M., Toth, P. (eds.) CPAIOR 2010. LNCS, vol. 6140, pp. 147–161. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  19. 19.
    Grimes, D., Hebrard, E., Malapert, A.: Closing the Open Shop: Contradicting Conventional Wisdom. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 400–408. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  20. 20.
    Johnson, S.M.: Optimal two- and three-stage production with setup times included. Naval Research Quarterly 1, 61–68 (1954)CrossRefGoogle Scholar
  21. 21.
    Lecoutre, C., Sais, L., Tabary, S., Vidal, V.: Nogood Recording from Restarts. In: IJCAI, pp. 131–136 (2007)Google Scholar
  22. 22.
    Markowsky, G.: Permutation lattices revised. Mathematical Social Sciences 27(1), 59–72 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Roubellat, F., Billaut, J.-C., Villaumié, M.: Ordonnancement d’ateliers: d’Orabaid à Ordo (in French). Revue d’Automatique et de Productique Appliquées 8(5), 683–713 (1995)Google Scholar
  24. 24.
    Sabuncuoğlu, I., Bayiz, M.: Analysis of reactive scheduling problems in a job shop environment. European Journal of Operational Research 126(3), 567–586 (2000)zbMATHCrossRefGoogle Scholar
  25. 25.
    Sabuncuoğlu, I., Kizilisik, O.: Reactive scheduling in a dynamic and stochastic fms environment. International Journal of Production Research 41(17), 4211–4231 (2003)zbMATHCrossRefGoogle Scholar
  26. 26.
    Sevastyanov, S., Lin, B.M.T.: Efficient enumeration of optimal and approximate solutions of the two-machine flow-shop problem. In: 10th Workshop on Models and Algorithms for Planning and Scheduling Problems (MAPSP 2011), Nymburk, Czech Republic (June 2011)Google Scholar
  27. 27.
    T’kindt, V., Gupta, J.N.D., Billaut, J.-C.: Two-machine flowshop scheduling with a secondary criterion. Computers and Operations Research 30(4), 505–526 (2003)zbMATHCrossRefGoogle Scholar
  28. 28.
    Walsh, T.: Search in a Small World. In: IJCAI, pp. 1172–1177 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jean-Charles Billaut
    • 1
  • Emmanuel Hebrard
    • 2
    • 3
  • Pierre Lopez
    • 2
    • 3
  1. 1.Laboratoire d’InformatiqueUniversité François-Rabelais ToursToursFrance
  2. 2.CNRS, LAASToulouseFrance
  3. 3.Université de Toulouse, UPS, INSA, INP, ISAE, UT1, UTM, LAASToulouseFrance

Personalised recommendations