Hybrid Heuristics for Multimodal Homecare Scheduling

  • Andrea Rendl
  • Matthias Prandtstetter
  • Gerhard Hiermann
  • Jakob Puchinger
  • Günther Raidl
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7298)


We focus on hybrid solution methods for a large-scale real-world multimodal homecare scheduling (MHS) problem, where the objective is to find an optimal roster for nurses who travel in tours from patient to patient, using different modes of transport. In a first step, we generate a valid initial solution using Constraint Programming (CP). In a second step, we improve the solution using one of the following metaheuristic approaches: (1) variable neighborhood descent, (2) variable neighborhood search, (3) an evolutionary algorithm, (4) scatter search and (5) a simulated annealing hyper heuristic. Our evaluation, based on computational experiments, demonstrates how hybrid approaches are particularly strong in finding promising solutions for large real-world MHS problem instances.


Local Search Variable Neighborhood Search Scatter Search Vehicle Route Problem With Time Window Construction Heuristic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahuja, R.K., Orlin, J.B., Sharma, D.: Very large-scale neighborhood search. International Transactions in Operational Research 7(4-5), 301–317 (2000)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bai, R., Blazewicz, J., Burke, E.K., Kendall, G., Mccollum, B.: A simulated annealing hyper-heuristic methodology for flexible decision support. Tech. rep., School of Computer Science, University of Nottingham, England (2006)Google Scholar
  3. 3.
    Bai, R., Burke, E.K., Kendall, G., Li, J., McCollum, B.: A hybrid evolutionary approach to the nurse rostering problem. IEEE Transactions on Evolutionary Computation 14(4), 580–590 (2010)CrossRefGoogle Scholar
  4. 4.
    Bertels, S., Fahle, T.: A hybrid setup for a hybrid scenario: combining heuristics for the home health care problem. Comput. Oper. Res. 33, 2866–2890 (2006)zbMATHCrossRefGoogle Scholar
  5. 5.
    Bräysy, O., Gendreau, M.: Vehicle routing problem with time windows, part i: Route construction and local search algorithms. Transportation Science 39(1), 104–118 (2005)CrossRefGoogle Scholar
  6. 6.
    Bräysy, O., Gendreau, M.: Vehicle routing problem with time windows, part ii: Metaheuristics. Transportation Science 39(1), 119–139 (2005)CrossRefGoogle Scholar
  7. 7.
    Burke, E.K., Curtois, T., Qu, R., Berghe, G.V.: A scatter search approach to the nurse rostering problem. Journal of the Operational Research Society 61(11), 1667–1679 (2010)CrossRefGoogle Scholar
  8. 8.
    Burke, E.K., De Causmaecker, P., Berghe, G.V., Van Landeghem, H.: The state of the art of nurse rostering. Journal of Scheduling 7, 441–499 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Eveborn, P., Flisberg, P., Ronnqvisb, M.: Laps care - an operational system for staff planning. European Journal of Operational Research 171, 962–976 (2006)zbMATHCrossRefGoogle Scholar
  10. 10.
    Gent, I., Walsh, T.: CSPlib: A benchmark library for constraints. Tech. rep., Technical report APES-09-1999 (1999),; A shorter version appears in: Jaffar, J. (ed.) CP 1999. LNCS, vol. 1713, pp. 480–481. Springer, Heidelberg (1999)
  11. 11.
    Glover, F., Laguna, M., Mart, R.: Fundamentals of scatter search and path relinking. Control and Cybernetics 39, 653–684 (2000)Google Scholar
  12. 12.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning, 1st edn. Addison-Wesley Longman Publishing Co., Inc., Boston (1989)zbMATHGoogle Scholar
  13. 13.
    Hansen, P., Mladenović, N.: Variable neighborhood search. In: Glover, F.W., Kochenberger, G.A. (eds.) Handbook of Metaheuristics, pp. 145–184. Kluwer Academic Publisher, New York (2003)Google Scholar
  14. 14.
    Krzysztof, K., Szymanek, R.: Jacop java constraint solver (December 2011),
  15. 15.
    Moscato, P.: Memetic algorithms: a short introduction, pp. 219–234. McGraw-Hill Ltd., Maidenhead (1999)Google Scholar
  16. 16.
    Nikolaev, A.G., Jacobson, S.H.: Simulated annealing. In: Gendreau, M., Potvin, J.Y., Hillier, F.S. (eds.) Handbook of Metaheuristics. International Series in Operations Research & Management Science, vol. 146, pp. 1–39. Springer (2010)Google Scholar
  17. 17.
    Prandtstetter, M., Raidl, G.R., Misar, T.: A Hybrid Algorithm for Computing Tours in a Spare Parts Warehouse. In: Cotta, C., Cowling, P. (eds.) EvoCOP 2009. LNCS, vol. 5482, pp. 25–36. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  18. 18.
    Rasmussen, M.S., Justesen, T., Dohn, A., Larsen, J.: The home care crew scheduling problem: Preference-based visit clustering and temporal dependencies. Tech. Rep. 11-2010, DTU Management Engineering (May 2010)Google Scholar
  19. 19.
    Rossi, F., van Beek, P., Walsh, T.: Handbook of Constraint Programming (Foundations of Artificial Intelligence). Elsevier Science Inc., New York (2006)Google Scholar
  20. 20.
    Steeg, J., Schröder, M.: A hybrid approach to solve the periodic home health care problem. In: Kalcsics, J., Nickel, S. (eds.) Operations Research Proceedings 2007. Operations Research Proceedings, vol. 2007, pp. 297–302. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  21. 21.
    Whitley, D., Kauth, J.: Genitor: A different genetic algorithm. In: Proc. of the Rocky Mountain Conf. on Artificial Intelligence, pp. 118–130 (1988)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Andrea Rendl
    • 1
  • Matthias Prandtstetter
    • 1
  • Gerhard Hiermann
    • 2
  • Jakob Puchinger
    • 1
  • Günther Raidl
    • 2
  1. 1.Mobility Department, Dynamic Transportation SystemsAIT Austrian Institute of TechnologyAustria
  2. 2.Vienna University of TechnologyAustria

Personalised recommendations