Abstract

This paper presents an example of cooperation between AI planning techniques and Constraint Programming or Operations Research. More precisely, it presents a way of boosting forward planning using combinatorial optimization techniques. The idea consists in combining on one hand a dynamic model that represents the Markovian dynamics of the system considered (i.e. state transitions), and on the other hand a static model that describes the global properties that are required over state trajectories. The dynamic part is represented by so-called constraint-based timed automata, whereas the static part is represented by so-called constraint-based observers. The latter are modeled using standard combinatorial optimization frameworks, such as linear programming, constraint programming, scheduling, or boolean satisfiability. They can be called at any step of the forward search to cut it via inconsistency detection. Experiments show significant improvements on some benchmarks of the International Planning Competition.

Keywords

Static Part Constraint Programming Constraint Satisfaction Problem Dynamic Part Consistency Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alur, R., Dill, D.: A Theory of Timed Automata. Journal of Theoretical Computer Science 126(2), 183–235 (1994)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Bacchus, F., Kabanza, F.: Planning for Temporally Extended Goals. Annals of Mathematics and Artificial Intelligence 22(1-2), 5–27 (1998)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Bacchus, F., Kabanza, F.: Using Temporal Logics to Express Search Control Knowledge for Planning. Artificial Intelligence 16, 123–191 (2000)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Baptiste, P., Pape, C.L., Nuijten, W.: Constraint-based Scheduling: Applying Constraint Programming to Scheduling Problems. Kluwer Academic Publishers (2001)Google Scholar
  5. 5.
    van Beek, P., Chen, X.: CPlan: A Constraint Programming Approach to Planning. In: Proc. of the 16th National Conference on Artificial Intelligence (AAAI 1999), Orlando, FL, USA, pp. 585–590 (1999)Google Scholar
  6. 6.
    Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability. IOS Press (2009)Google Scholar
  7. 7.
    Bockmayr, A., Dimopoulos, Y.: Integer Programs and Valid Inequalities for Planning Problems. In: Biundo, S., Fox, M. (eds.) ECP 1999. LNCS, vol. 1809, pp. 239–251. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  8. 8.
    Cassandras, C., Lafortune, S.: Introduction to Discrete Event Systems. Springer (2008)Google Scholar
  9. 9.
  10. 10.
    Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press (1999)Google Scholar
  11. 11.
    Fikes, R., Nilsson, N.: STRIPS: a New Approach to the Application of Theorem Proving. Artificial Intelligence 2, 189–208 (1971)MATHCrossRefGoogle Scholar
  12. 12.
    Fox, M., Long, D.: PDDL2.1: An Extension to PDDL for Expressing Temporal Planning Domains. Journal of Artificial Intelligence Research 20, 61–124 (2003)MATHGoogle Scholar
  13. 13.
    Fox, M., Long, D.: Modelling Mixed Discrete-Continuous Domains for Planning Domains. Journal of Artificial Intelligence Research 27, 235–297 (2006)MATHGoogle Scholar
  14. 14.
    Frank, J., Jónsson, A.: Constraint-Based Attribute and Interval Planning. Constraints 8(4), 339–364 (2003)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
  16. 16.
    IPC: International Planning Competition, http://ipc.icaps-conference.org/
  17. 17.
    Kautz, H., Selman, B.: Planning as Satisfiability. In: Proc. of the 10th European Conference on Artificial Intelligence (ECAI 1992), Vienna, Austria, pp. 359–363 (1992)Google Scholar
  18. 18.
    Kautz, H., Walser, J.: Integer Optimization Models of AI Planning Problems. Knowledge Engineering Review 15(1), 101–117 (2000)CrossRefGoogle Scholar
  19. 19.
    Kvarnström, J., Doherty, P.: TALplanner: A Temporal Logic Based Forward Chaining Planner. Annals of Mathematics and Artificial Intelligence 30, 119–169 (2001)CrossRefGoogle Scholar
  20. 20.
    Laborie, P., Ghallab, M.: Planning with Sharable Resource Constraints. In: Proc. of the 14th International Joint Conference on Artificial Intelligence (IJCAI 1995), Montréal, Canada, pp. 1643–1651 (1995)Google Scholar
  21. 21.
    lp_solve Team: lp_solve, http://lpsolve.sourceforge.net/
  22. 22.
    Nareyek, A., Freuder, E., Fourer, R., Giunchiglia, E., Goldman, R., Kautz, H., Rintanen, J., Tate, A.: Constraints and AI Planning. IEEE Intelligent Systems 20(2), 62–72 (2005)CrossRefGoogle Scholar
  23. 23.
    Nau, D., Au, T., Ilghami, O., Kuter, U., Murdock, W., Wu, D., Yaman, F.: SHOP2: An HTN planning system. Journal of Artificial Intelligence Research 20, 379–404 (2003)MATHGoogle Scholar
  24. 24.
    Nemhauser, G., Wolsey, L.: Integer and Combinatorial Optimization. John Wiley & Sons (1988)Google Scholar
  25. 25.
    Rossi, F., Beek, P.V., Walsh, T. (eds.): Handbook of Constraint Programming. Elsevier (2006)Google Scholar
  26. 26.
    SAT4J Team: SAT4J, http://www.sat4j.org/
  27. 27.
    Smith, D., Frank, J., Cushing, W.: The ANML Language. In: Proc. of the 18th International Conference on Automated Planning and Scheduling (ICAPS 2008), Sydney, Australia (2008)Google Scholar
  28. 28.
    Verfaillie, G., Pralet, C., Lemaître, M.: How to Model Planning and Scheduling Problems using Timelines. The Knowledge Engineering Review 25(3), 319–336 (2010)CrossRefGoogle Scholar
  29. 29.
    Vidal, V., Geffner, H.: Branching and pruning: An optimal temporal POCL planner based on constraint programming. Artificial Intelligence 170, 298–335 (2006)MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Vossen, T., Ball, M., Lotem, A., Nau, D.: On the Use of Integer Programming Models in AI Planning. In: Proc. of the 16th International Joint Conference on Artificial Intelligence (IJCAI 1999), Stockholm, Sweden, pp. 304–309 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Cédric Pralet
    • 1
  • Gérard Verfaillie
    • 1
  1. 1.The French Aerospace LabONERAToulouseFrance

Personalised recommendations