Advertisement

Abstract

Smooth decomposable negation normal form (s-DNNF) circuits are a compact form of representing many Boolean functions, that permit linear time satisfiability checking. Given a constraint defined by an s-DNNF circuit, we can create a propagator for the constraint by decomposing the circuit using a Tseitin transformation. But this introduces many additional Boolean variables, and hides the structure of the original s-DNNF. In this paper we show how we can build a propagator that works on the s-DNNF circuit directly, and can be integrated into a lazy-clause generation-based constraint solver. We show that the resulting propagator can efficiently solve problems where s-DNNF circuits are the natural representation of the constraints of the problem, outperforming the decomposition based approach.

Keywords

Constraint Satisfaction Problem Watch Parent Constraint Solver Shift Schedule Negation Normal Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cheng, K.C.K., Yap, R.H.C.: Maintaining Generalized Arc Consistency on Ad Hoc r-Ary Constraints. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 509–523. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Gange, G., Stuckey, P., Lagoon, V.: Fast set bounds propagation using a BDD-SAT hybrid. Journal of Artificial Intelligence Research 38, 307–338 (2010)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Gange, G., Stuckey, P.J., Szymanek, R.: MDD propagators with explanation. Constraints 16(4), 407–429 (2011)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Pesant, G.: A Regular Language Membership Constraint for Finite Sequences of Variables. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 482–495. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Darwiche, A.: Sdd: A new canonical representation of propositional knowledge bases. In: IJCAI, pp. 819–826 (2011)Google Scholar
  6. 6.
    Tseitin, G.: On the complexity of derivation in propositional calculus. Studies in Constructive Mathematics and Mathematical Logic, part 2, pp. 115–125 (1968)Google Scholar
  7. 7.
    Schulte, C., Stuckey, P.: Efficient constraint propagation engines. ACM Transactions on Programming Languages and Systems 31(1), Article No. 2 (2008)Google Scholar
  8. 8.
    Ohrimenko, O., Stuckey, P., Codish, M.: Propagation via lazy clause generation. Constraints 14(3), 357–391 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Fargier, H., Marquis, P.: On valued negation normal form formulas. In: IJCAI, pp. 360–365 (2007)Google Scholar
  10. 10.
    Darwiche, A., Marquis, P.: A knowledge compilation map. Journal of Artificial Intelligence Research 17, 229–264 (2002)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Quimper, C., Walsh, T.: Global Grammar Constraints. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 751–755. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Jung, J.C., Barahona, P., Katsirelos, G., Walsh, T.: Two encodings of DNNF theories. In: ECAI Workshop on Inference Methods Based on Graphical Structures of Knowledge (2008)Google Scholar
  13. 13.
    Hawkins, P., Stuckey, P.J.: A Hybrid BDD and SAT Finite Domain Constraint Solver. In: Van Hentenryck, P. (ed.) PADL 2006. LNCS, vol. 3819, pp. 103–117. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Subbarayan, S.: Efficient Reasoning for Nogoods in Constraint Solvers with BDDs. In: Hudak, P., Warren, D.S. (eds.) PADL 2008. LNCS, vol. 4902, pp. 53–67. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Demassey, S., Pesant, G., Rousseau, L.M.: A cost-regular based hybrid column generation approach. Constraints 11(4), 315–333 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Abío, I., Nieuwenhuis, R., Oliveras, A., Rodríguez-Carbonell, E.: BDDs for Pseudo-Boolean Constraints – Revisited. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 61–75. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  17. 17.
    Katsirelos, G., Narodytska, N., Walsh, T.: Reformulating global grammar constraints. Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, 132–147 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Graeme Gange
    • 2
  • Peter J. Stuckey
    • 1
    • 2
  1. 1.Victoria LaboratoryNational ICT AustraliaAustralia
  2. 2.Department of Computer Science and Software EngineeringThe University of MelbourneAustralia

Personalised recommendations