A Lambda Calculus for Gödel–Dummett Logic Capturing Waitfreedom

  • Yoichi Hirai
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7294)

Abstract

We propose a typed lambda calculus based on Avron’s hypersequent calculus for Gödel–Dummett logic. This calculus turns out to model waitfree computation. Besides strong normalization and non-abortfullness, we give soundness and completeness of the calculus against the typed version of waitfree protocols. The calculus is not only proof theoretically interesting, but also valuable as a basis for distributed programming languages.

Keywords

Program Variable Natural Deduction Reduction Sequence Contexted Type Lambda Calculus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abramsky, S.: Computational interpretations of linear logic. Theo. Comp. Sci. 111(1-2), 3–57 (1993)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Avron, A.: Hypersequents, logical consequence and intermediate logics for concurrency. Ann. Math. Artif. Intell. 4, 225–248 (1991)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Avron, A.: The method of hypersequents in the proof theory of propositional non-classical logics, pp. 1–32. Clarendon Press (1996)Google Scholar
  4. 4.
    Baaz, M., Ciabattoni, A., Fermüller, C.: A natural deduction system for intuitionistic fuzzy logic. In: Lectures on Soft Computing (2001)Google Scholar
  5. 5.
    Balat, V., Di Cosmo, R., Fiore, M.: Extensional normalisation and type-directed partial evaluation for typed lambda calculus with sums. SIGPLAN Not. 39(1), 64–76 (2004)CrossRefGoogle Scholar
  6. 6.
    Biran, O., Moran, S., Zaks, S.: A combinatorial characterization of the distributed tasks which are solvable in the presence of one faulty processor. In: PODC 1988, pp. 263–275. ACM (1988)Google Scholar
  7. 7.
    Borowsky, E., Gafni, E.: Immediate atomic snapshots and fast renaming. In: PODC 1993, pp. 41–51. ACM (1993)Google Scholar
  8. 8.
    Ciabattoni, A., Galatos, N., Terui, K.: From axioms to analytic rules in nonclassical logics. In: LICS 2008, pp. 229–240. IEEE (2008)Google Scholar
  9. 9.
    Dummett, M.: A propositional calculus with denumerable matrix. J. Symb. Logic 24(2), 97–106 (1959)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Fermüller, C.G.: Parallel Dialogue Games and Hypersequents for Intermediate Logics. In: Cialdea Mayer, M., Pirri, F. (eds.) TABLEAUX 2003. LNCS, vol. 2796, pp. 48–64. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Fournet, C., Gonthier, G.: The Join Calculus: A Language for Distributed Mobile Programming. In: Barthe, G., Dybjer, P., Pinto, L., Saraiva, J. (eds.) APPSEM 2000. LNCS, vol. 2395, pp. 268–332. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Gentzen, G.: Investigations into logical deduction. American Philosophical Quarterly 1(4), 288–306 (1964)Google Scholar
  13. 13.
    de Groote, P.: On the Strong Normalisation of Intuitionistic Natural Deduction with Permutation-Conversions. Information and Computation 178(2), 441–464 (2002)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Herlihy, M.: Impossibility and universality results for wait-free synchronization. In: PODC 1988, pp. 276–290. ACM (1988)Google Scholar
  15. 15.
    Hirai, Y.: An Intuitionistic Epistemic Logic for Sequential Consistency on Shared Memory. In: Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS, vol. 6355, pp. 272–289. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Honda, K., Tokoro, M.: An Object Calculus for Asynchronous Communication. In: America, P. (ed.) ECOOP 1991. LNCS, vol. 512, pp. 133–147. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  17. 17.
    Milner, R.: Communicating and mobile systems: the pi-calculus. Cambridge University Press (1999)Google Scholar
  18. 18.
    Moran, S.: Extended impossibility results for asynchronous complete networks. Information Processing Letters 26(3), 145–151 (1987)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Saks, M., Zaharoglou, F.: Wait-free k-set agreement is impossible: the topology of public knowledge. In: STOC 1993, pp. 101–110. ACM (1993)Google Scholar
  20. 20.
    Sørensen, M.H., Urzyczyn, P.: Lectures on the Curry–Howard isomorphism. Elsevier (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Yoichi Hirai
    • 1
  1. 1.JSPSThe University of TokyoJapan

Personalised recommendations