Ballot Aggregation and Mixnet Based Open-Audit Elections

(Extended Abstract)
  • Olivier Pereira
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7163)


Two main families of cryptographic techniques have been proposed for realizing open-audit remote elections on adversarially controlled networks: one is based on the homomorphic aggregation of encrypted ballots, while the other anonymizes ballots by transferring them through a network of mixes.


Election Outcome Secret Data Elliptic Curve Cryptography Homomorphic Encryption Cryptographic Operation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adida, B.: Helios: web-based open-audit voting. In: Sec 2008: Proceedings of the 17th Conference on Security Symposium, pp. 335–348. USENIX Association, Berkeley (2008)Google Scholar
  2. 2.
    Adida, B., de Marneffe, O., Pereira, O., Quisquater, J.J.: Electing a University President Using Open-Audit Voting: Analysis of Real-World Use of Helios. In: Jefferson, D., Hall, J.L., Moran, T. (eds.) Electronic Voting Technology Workshop/Workshop on Trustworthy Elections. Usenix (August 2009)Google Scholar
  3. 3.
    Baudron, O., Fouque, P.A., Pointcheval, D., Stern, J., Poupard, G.: Practical multi-candidate election system. In: Symposium on Principles of Distributed Computing, pp. 274–283. ACM (2001)Google Scholar
  4. 4.
    Bulens, P., Giry, D., Pereira, O.: Running mixnet-based elections with Helios. In: Shacham, H., Teague, V. (eds.) Electronic Voting Technology Workshop/Workshop on Trustworthy Elections. Usenix (2011)Google Scholar
  5. 5.
    Cohen, J.D., Fischer, M.J.: A robust and verifiable cryptographically secure election scheme (extended abstract). In: 26th Annual Symposium on Foundations of Computer Science, pp. 372–382. IEEE (1985)Google Scholar
  6. 6.
    Cramer, R., Gennaro, R., Schoenmakers, B.: A Secure and Optimally Efficient Multi-authority Election Scheme. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 103–118. Springer, Heidelberg (1997)Google Scholar
  7. 7.
    Damgård, I., Jurik, M.: A Generalisation, a Simplification and Some Applications of Paillier’s Probabilistic Public-Key System. In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992, pp. 119–136. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Furukawa, J., Sako, K.: An Efficient Scheme for Proving a Shuffle. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 368–387. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Groth, J.: A Verifiable Secret Shuffle of Homomorphic Encryptions. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 145–160. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Haustenne, L., De Neyer, Q., Pereira, O.: Elliptic curve cryptography in javascript. In: ECRYPT Workshop on Lightweight Cryptography (2011)Google Scholar
  11. 11.
    Neff, C.A.: A verifiable secret shuffle and its application to e-voting. In: Proceedings of the 8th ACM Conference on Computer and Communications Security, pp. 116–125. ACM (2001)Google Scholar
  12. 12.
    OSCE/ODIHR: Estonia parliamentary elections, 6 march 2011 – OSCE/ODIHR election assessment mission report (May 2011),
  13. 13.
    Sako, K., Kilian, J.: Receipt-Free Mix-Type Voting Scheme - a Practical Solution to the Implementation of a Voting Booth. In: Guillou, L.C., Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, pp. 393–403. Springer, Heidelberg (1995)Google Scholar
  14. 14.
    Wikström, D.: A Universally Composable Mix-Net. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 317–335. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Olivier Pereira
    • 1
  1. 1.ICTEAM – Crypto GroupUniversité catholique de LouvainLouvain-la-NeuveBelgium

Personalised recommendations