Parkinson-Syndrom, Chorea Huntington

  • Kathrin Reetz
  • Ferdinand C. Binkofski
  • Carsten Eggers

Zusammenfassung

Das Parkinson-Syndrom und die Chorea Huntington gehören zu den neurodegenerativen Bewegungsstörungen, die – ebenso wie die Dystonien (► Kap. 33) – traditionell den Basalganglienerkrankungen zugeordnet werden. Funktionelle magnetresonanztomographische Verfahren leisten einen wichtigen Beitrag zum Verständnis sowohl der motorischen, aber auch der nichtmotorischen Symptome (Kognition und psychische Auffälligkeiten) dieser Erkrankungsbilder. Insbesondere die nichtmotorischen Symptome als auch genetische Aspekte sind zunehmend in den Interessenfokus gerückt, was sich auch in den nachfolgend vorgestellten funktionellen Bildgebungsstudien widerspiegelt. Hierbei sind Studien in einem sehr frühen bzw. asymptomatischen Stadium von besonderem Interesse. Auch methodisch findet sich eine Erweiterung um interessante Bildgebungsstudien zur funktionellen Konnektivität.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Anders S, Sack B, Pohl A et al. (2012) Compensatory premotor activity during affective face processing in subclinical carriers of a single mutant Parkin allele. Brain 135: 1128–1140CrossRefPubMedGoogle Scholar
  2. Baudrexel S, Witte T, Seifried C et al. (2011) Resting state fMRI reveals increased subthalamic nucleus-motor cortex connectivity in Parkinson’s disease. Neuroimage 55: 1728–1738CrossRefPubMedGoogle Scholar
  3. Bartrés-Faz D, Martí MJ, Junqué C et al. (2007) Increased cerebral activity in Parkinson’s disease patients carrying the DRD2 TaqIA A1 allele during a demanding motor task: a compensatory mechanism? Genes Brain Behav 6: 588–592CrossRefPubMedGoogle Scholar
  4. Bekris LM, Mata IF, Zabetian CP (2010) The genetics of Parkinson disease. J Geriatr Psychiatry Neurol 23: 228–242CrossRefPubMedGoogle Scholar
  5. Bloem BR, Grimbergen YA, Cramer M, Valkenburg VV (2000) »Stops walking when talking« does not predict falls in Parkinson’s disease. Ann Neurol 48: 268CrossRefPubMedGoogle Scholar
  6. Bohanna I, Georgiou-Karistianis N, Hannan AJ, Egan GF (2008) Magnetic resonance imaging as an approach towards identifying neuropathological biomarkers for Huntington’s disease. Brain Res Rev 58: 209–225CrossRefPubMedGoogle Scholar
  7. Braak H, Ghebremedhin E, Rub U, Bratzke H, Del Tredici K (2004) Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res 318: 121–134CrossRefPubMedGoogle Scholar
  8. Braak H, Del Tredici K (2008) Invited Article: Nervous system pathology in sporadic Parkinson disease. Neurology 70: 1916–1925CrossRefPubMedGoogle Scholar
  9. Buhmann C, Glauche V, Sturenburg HJ et al. (2003) Pharmacologically modulated fMRI – cortical responsiveness to levodopa in drugnaive hemiparkinsonian patients. Brain 126: 451–461CrossRefPubMedGoogle Scholar
  10. Buhmann C, Binkofski F, Klein C, Buchel C, van Eimeren T, Erdmann C, Hedrich K, Kasten M, Hagenah J, Deuschl G, Pramstaller PP, Siebner HR (2005) Motor reorganization in asymptomatic carriers of a single mutant Parkin allele: a human model for presymptomatic parkinsonism. Brain 128: 2281–2290CrossRefPubMedGoogle Scholar
  11. Cardoso EF, Maia FM, Fregni F et al. (2009) Depression in Parkinson’s disease: convergence from voxel-based morphometry and functional magnetic resonance imaging in the limbic thalamus. Neuroimage 47: 467–472CrossRefPubMedGoogle Scholar
  12. Ceballos-Baumann AO (2003) Functional imaging in Parkinson’s disease: activation studies with PET, fMRI and SPECT. J Neurol 250 Suppl 1: I15–123CrossRefGoogle Scholar
  13. Cerasa A, Hagberg GE, Peppe A et al. (2006) Functional changes in the activity of cerebellum and frontostriatal regions during externally and internally timed movement in Parkinson’s disease. Brain Res Bull 71: 259–269CrossRefPubMedGoogle Scholar
  14. Clark VP, Lai S, Deckel AW (2002) Altered functional MRI responses in Huntington’s disease. Neuroreport 13: 703–706CrossRefPubMedGoogle Scholar
  15. Clark US, Neargarder S, Cronin-Golomb A (2008) Specific impairments in the recognition of emotional facial expressions in Parkinson’s disease. Neuropsychologia 46: 2300–2309CrossRefPubMedGoogle Scholar
  16. DeLong MR (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13: 281–285CrossRefPubMedGoogle Scholar
  17. Dierks T, Linden DE, Hertel A et al. (1999) Multimodal imaging of residual function and compensatory resource allocation in cortical atrophy: a case study of parietal lobe function in a patient with Huntington’s disease. Psychiatry Res 90: 67–75PubMedGoogle Scholar
  18. Farrer MJ (2006) Genetics of Parkinson disease: paradigm shifts and future prospects. Nat Rev Genet 7: 306–318CrossRefPubMedGoogle Scholar
  19. Frosini D, Pesaresi I, Cosottini M et al. (2010) Parkinson’s disease and pathological gambling: results from a functional MRI study. Mov Disord 25: 2449–2453CrossRefPubMedGoogle Scholar
  20. Gavazzi C, Nave RD, Petralli R et al. (2007) Combining functional and structural brain magnetic resonance imaging in Huntington disease. J Comput Assist Tomogr 31: 574–580CrossRefPubMedGoogle Scholar
  21. Georgiou-Karistianis N, Sritharan A, Farrow M et al. (2007) Increased cortical recruitment in Huntington’s disease using a Simon task. Neuropsychologia 45: 1791–1800CrossRefPubMedGoogle Scholar
  22. Glickstein M, Stein J (1991) Paradoxical movement in Parkinson’s disease. Trends Neurosci 14: 480–482CrossRefPubMedGoogle Scholar
  23. Haslinger B, Erhard P, Kampfe N et al. (2001) Event-related functional magnetic resonance imaging in Parkinson’s disease before and after levodopa. Brain 124: 558–570CrossRefPubMedGoogle Scholar
  24. Helmich RC, Derikx LC, Bakker M et al. (2010) Spatial remapping of cortico-striatal connectivity in Parkinson’s disease. Cereb Cortex 20: 1175–1186CrossRefPubMedGoogle Scholar
  25. Hennenlotter A, Schroeder U, Erhard P et al. (2004) Neural correlates associated with impaired disgust processing in pre-symptomatic Huntington’s disease. Brain 127: 1446–1453CrossRefPubMedGoogle Scholar
  26. Hilker R, Klein C, Ghaemi M, Kis B, Strotmann T, Ozelius LJ et al. (2001) Positron emission tomographic analysis of the nigrostriatal dopaminergic system in familial parkinsonism associated with mutations in the parkin gene. Ann Neurol 49: 367–376CrossRefPubMedGoogle Scholar
  27. Hughes LE, Barker RA, Owen AM, Rowe JB (2010) Parkinson’s disease and healthy aging: independent and interacting effects on action selection. Hum Brain Mapp 31: 1886–1899CrossRefPubMedGoogle Scholar
  28. Kehagia AA, Barker RA, Robbins TW (2010) Neuropsychological and clinical heterogeneity of cognitive impairment and dementia in patients with Parkinson’s disease. Lancet Neurol 9: 1200–1213CrossRefPubMedGoogle Scholar
  29. Kim JS, Reading SA, Brashers-Krug T et al. (2004) Functional MRI study of a serial reaction time task in Huntington’s disease. Psychiatry Res 131: 23–30CrossRefPubMedGoogle Scholar
  30. Klein C, Schlossmacher MG (2006) The genetics of Parkinson disease: Implications for neurological care. Nat Clin Pract Neurol 2: 136–146CrossRefPubMedGoogle Scholar
  31. Kloppel S, Draganski B, Siebner HR et al. (2009) Functional compensation of motor function in pre-symptomatic Huntington’s disease. Brain 132: 1624–1632CrossRefPubMedGoogle Scholar
  32. Kloppel S, Stonnington CM, Petrovic P et al. (2010) Irritability in preclinical Huntington’s disease. Neuropsychologia 48: 549–557CrossRefPubMedGoogle Scholar
  33. Kwak Y, Peltier S, Bohnen NI et al. (2010) Altered resting state corticostriatal connectivity in mild to moderate stage Parkinson’s disease. Front Syst Neurosci 4: 143CrossRefPubMedGoogle Scholar
  34. Lang AE (2003) Subthalamic stimulation for Parkinson’s disease – living better electrically? N Engl J Med 349: 1888–1891CrossRefPubMedGoogle Scholar
  35. Lewis SJ, Cools R, Robbins TW et al. (2003) Using executive heterogeneity to explore the nature of working memory deficits in Parkinson’s disease. Neuropsychologia 41: 645–654CrossRefPubMedGoogle Scholar
  36. Mattay VS, Tessitore A, Callicott JH et al. (2002) Dopaminergic modulation of cortical function in patients with Parkinson’s disease. Ann Neurol 51: 156–164CrossRefPubMedGoogle Scholar
  37. Meppelink AM, de Jong BM, Renken R et al. (2009) Impaired visual processing preceding image recognition in Parkinson’s disease patients with visual hallucinations. Brain 132: 2980–2993CrossRefPubMedGoogle Scholar
  38. Moessnang C, Frank G, Bogdahn U et al. (2011) Altered activation patterns within the olfactory network in Parkinson’s disease. Cereb Cortex 21: 1246–1253CrossRefPubMedGoogle Scholar
  39. Monchi O, Petrides M, Doyon J et al. (2004) Neural bases of set-shifting deficits in Parkinson’s disease. J Neurosci 24: 702–710CrossRefPubMedGoogle Scholar
  40. Palmer SJ, Li J, Wang ZJ, McKeown MJ (2010) Joint amplitude and connectivity compensatory mechanisms in Parkinson’s disease. Neuroscience 166: 1110–1118CrossRefPubMedGoogle Scholar
  41. Pankratz N, Nichols WC, Uniacke SK et al. (2003) Genome-wide linkage analysis and evidence of gene-by-gene interactions in a sample of 362 multiplex Parkinson disease families. Hum Mol Genet 12: 2599–2608CrossRefPubMedGoogle Scholar
  42. Paulsen JS, Zimbelman JL, Hinton SC et al. (2004) fMRI biomarker of early neuronal dysfunction in presymptomatic Huntington’s Disease. AJNR Am J Neuroradiol 25: 1715–1721PubMedGoogle Scholar
  43. Pinto S, Mancini L, Jahanshahi M et al. (2011) Functional magnetic resonance imaging exploration of combined hand and speech movements in Parkinson’s disease. Mov Disord 26: 2212–2219CrossRefPubMedGoogle Scholar
  44. Ramirez-Ruiz B, Marti MJ, Tolosa E et al. C (2008) Brain response to complex visual stimuli in Parkinson’s patients with hallucinations: a functional magnetic resonance imaging study. Mov Disord 23: 2335–2343CrossRefPubMedGoogle Scholar
  45. Rao H, Mamikonyan E, Detre JA et al. (2010) Decreased ventral striatal activity with impulse control disorders in Parkinson’s disease. Mov Disord 25: 1660–1669CrossRefPubMedGoogle Scholar
  46. Reading SA, Dziorny AC, Peroutka LA et al. (2004) Functional brain changes in presymptomatic Huntington’s disease. Ann Neurol 55: 879–883CrossRefPubMedGoogle Scholar
  47. Rowe J, Stephan KE, Friston K et al. (2002) Attention to action in Parkinson’s disease: impaired effective connectivity among frontal cortical regions. Brain 125: 276–289CrossRefPubMedGoogle Scholar
  48. Rupp J, Dzemidzic M, Blekher T et al. (2011) Abnormal error-related antisaccade activation in premanifest and early manifest Huntington disease. Neuropsychology 25: 306–318CrossRefPubMedGoogle Scholar
  49. Sabatini U, Boulanouar K, Fabre N et al. (2000) Cortical motor reorganization in akinetic patients with Parkinson’s disease: a functional MRI study. Brain 123 (Pt 2): 394–403CrossRefPubMedGoogle Scholar
  50. Saft C, Schuttke A, Beste C et al. (2008) fMRI reveals altered auditory processing in manifest and premanifest Huntington’s disease. Neuropsychologia 46: 1279–1289CrossRefPubMedGoogle Scholar
  51. Schonberg T, O’Doherty JP, Joel D et al. (2010) Selective impairment of prediction error signaling in human dorsolateral but not ventral striatum in Parkinson’s disease patients: evidence from a modelbased fMRI study. Neuroimage 49: 772–781CrossRefPubMedGoogle Scholar
  52. Snijders AH, van de Warrenburg BP, Giladi N, Bloem BR (2007) Neurological gait disorders in elderly people: clinical approach and classification. Lancet Neurol 6: 63–64CrossRefPubMedGoogle Scholar
  53. Snijders AH, Leunissen I, Bakker M et al. (2010) Gait-related cerebral alterations in patients with Parkinson’s disease with freezing of gait. Brain 134: 59–72CrossRefPubMedGoogle Scholar
  54. Sprengelmeyer R, Young AW, Mahn K et al. (2003) Facial expression recognition in people with medicated and unmedicated Parkinson’s disease. Neuropsychologia 41: 1047–1057CrossRefPubMedGoogle Scholar
  55. Tessitore A, Hariri AR, Fera F et al. (2002) Dopamine modulates the response of the human amygdala: a study in Parkinson’s disease. J Neurosci 22: 9099–9103PubMedGoogle Scholar
  56. Thiruvady DR, Georgiou-Karistianis N, Egan GF et al. (2007) Functional connectivity of the prefrontal cortex in Huntington’s disease. J Neurol Neurosurg Psychiatry 78: 127–133CrossRefPubMedGoogle Scholar
  57. van Eimeren T, Ballanger B, Pellecchia G et al. (2009a) Dopamine agonists diminish value sensitivity of the orbitofrontal cortex: a trigger for pathological gambling in Parkinson’s disease? Neuropsychopharmacology 34: 2758–2766CrossRefGoogle Scholar
  58. van Eimeren T, Monchi O, Ballanger B, Strafella AP (2009b) Dysfunction of the default mode network in Parkinson disease: a functional magnetic resonance imaging study. Arch Neurol 66: 877–883CrossRefGoogle Scholar
  59. van Eimeren T, Binkofski F, Buhmann C, Hagenah J, Strafella AP, Pramstaller PP et al. (2010) Imaging movement-related activity in medicated Parkin-associated and sporadic Parkinson’s disease. Parkinsonism Relat Disord 16: 384-387CrossRefPubMedGoogle Scholar
  60. van Nuenen BF, Weiss MM, Bloem BR et al. (2009) Heterozygous carriers of a Parkin or PINK1 mutation share a common functional endophenotype. Neurology 72: 1041–1047CrossRefPubMedGoogle Scholar
  61. Voermans NC, Petersson KM, Daudey L et al. (2004) Interaction between the human hippocampus and the caudate nucleus during route recognition. Neuron 43: 427–435CrossRefPubMedGoogle Scholar
  62. Werheid K, Zysset S, Muller A, Reuter M, von Cramon DY (2003) Rule learning in a serial reaction time task: an fMRI study on patients with early Parkinson’s disease. Brain Res Cogn Brain Res 16: 273–284CrossRefPubMedGoogle Scholar
  63. Westermann B, Wattendorf E, Schwerdtfeger U et al. (2008) Functional imaging of the cerebral olfactory system in patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry 79: 19–24CrossRefPubMedGoogle Scholar
  64. Wolf RC, Vasic N, Schonfeldt-Lecuona C et al. (2007) Dorsolateral prefrontal cortex dysfunction in presymptomatic Huntington’s disease: evidence from event-related fMRI. Brain 130: 2845–2857CrossRefPubMedGoogle Scholar
  65. Wolf RC, Sambataro F, Vasic N et al. (2008a) Aberrant connectivity of lateral prefrontal networks in presymptomatic Huntington’s disease. Exp Neurol 213: 137–144CrossRefGoogle Scholar
  66. Wolf RC, Sambataro F, Vasic N et al. (2008b) Altered frontostriatal coupling in pre-manifest Huntington’s disease: effects of increasing cognitive load. Eur J Neurol 15: 1180–1190CrossRefGoogle Scholar
  67. Wolf RC, Vasic N, Schonfeldt-Lecuona C et al. (2008c) [Functional imaging of cognitive processes in Huntington’s disease and its presymptomatic mutation carriers]. Nervenarzt 79: 408–420CrossRefGoogle Scholar
  68. Wu T, Long X, Zang Y et al. (2009) Regional homogeneity changes in patients with Parkinson’s disease. Hum Brain Mapp 30: 1502–1510CrossRefPubMedGoogle Scholar
  69. Wu T, Long X, Wang L et al. (2010) Functional connectivity of cortical motor areas in the resting state in Parkinson’s disease. Hum Brain Mapp 32: 1443–1457CrossRefPubMedGoogle Scholar
  70. Yu H, Sternad D, Corcos DM, Vaillancourt DE (2007) Role of hyperactive cerebellum and motor cortex in Parkinson’s disease. Neuroimage 35: 222–233CrossRefPubMedGoogle Scholar
  71. Zimbelman JL, Paulsen JS, Mikos A et al. (2007) fMRI detection of early neural dysfunction in preclinical Huntington’s disease. J Int Neuropsychol Soc 13: 758–769CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Kathrin Reetz
    • 1
    • 2
  • Ferdinand C. Binkofski
    • 1
    • 2
  • Carsten Eggers
    • 3
  1. 1.Neurologische KlinikUniversitätsklinikum AachenAachen
  2. 2.Institut für Neurowissenschaften und Medizin (INM-4)Forschungszentrum JülichJülich
  3. 3.Klinik und Poliklinik für NeurologieKlinikum der Universität zu KölnKöln

Personalised recommendations