Exekutive Funktionen

  • Nina Seiferth
  • Renate Thienel

Zusammenfassung

Exekutivfunktionen sind kognitive Prozesse, die den Ausdruck, die Organisation, die Aufrechterhaltung, Kontrolle und Modulation von Verhalten ermöglichen. Exekutive Dysfunktionen sind bei verschiedenen Krankheiten beschrieben worden, die im Allgemeinen auf strukturelle oder funktionelle Pathomechanismen des Frontal-, Parietal- und Temporalkortex sowie des anterioren Zingulums und der jeweiligen Konnektivität dieser Areale zurückgeführt werden können. Funktionell bildgebende Verfahren wie die fMRT konnten diesen Zusammenhang sowohl für Patienten wie auch für gesunde Probanden nachweisen. Dieses Kapitel soll zunächst eine Beschreibung und Einordnung der einzelnen Teilaspekte exekutiver Funktionen geben. Im Anschluss werden exemplarisch Untersuchungen dargestellt, die verschiedene Komponenten exekutiver Leistungen mithilfe der fMRT untersucht haben. Es wird zudem auf die Anwendung dieser Erkenntnisse zur Untersuchung von Patientengruppen eingegangen. Schließlich soll ein kurzer Ausblick auf mögliche zukünftige Entwicklungen dieses Bereichs der Forschung mit fMRT gegeben werden.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Amunts K, Weiss PH, Mohlberg H, Pieperhoff P, Eickhoff S, Gurd JM, Marshall JC, Shah NJ, Fink GR, Zilles K (2004) Analysis of neural mechanisms underlying verbal fluency in cytoarchitectonically defined stereotaxic space – the roles of Brodmann areas 44 and 45. Neuroimage 22: 42–56PubMedCrossRefGoogle Scholar
  2. Baddeley AD, Hitch GJ (1974) Working memory. In: Bower GA (ed) Recent advances in learning and motivation, 8th vol. Academic Press, New York, pp 47–90Google Scholar
  3. Basho S, Palmer ED, Rubio MA, Wulfeck B, Muller RA (2007) Effects of generation mode in fMRI adaptations of semantic fluency: paced production and overt speech. Neuropsychologia 45: 1697–1706PubMedCrossRefGoogle Scholar
  4. Beck SM, Locke HS, Savine AC, Jimura K, Braver TS (2010) Primary and secondary rewards differentially modulate neural activity dynamics during working memory. PLoS One 5: e9251CrossRefGoogle Scholar
  5. Brass M,Cramon DY von (2004) Selection for cognitive control: a functional magnetic resonance imaging study on the selection of task-relevant information. J Neurosci 24: 8847–8852PubMedCrossRefGoogle Scholar
  6. Brass M, Ullsperger M, Knoesche TR, Cramon DY von, Phillips NA (2005) Who comes first? The role of the prefrontal and parietal cortex in cognitive control. J Cogn Neurosci 17: 1367–1375PubMedCrossRefGoogle Scholar
  7. Brown JW, Braver TS (2005) Learned Predictions of Error Likelihood in the Anterior Cingulate Cortex. Science 307: 1118–1121PubMedCrossRefGoogle Scholar
  8. Buchsbaum BR, Greer S, Chang WL, Berman KF (2005) Meta-analysis of neuroimaging studies of the Wisconsin card-sorting task and component processes. Hum Brain Mapp 25: 35–45PubMedCrossRefGoogle Scholar
  9. Bush G, Whalen PJ, Rosen BR, Jenike MA, McInerney SC, Rauch SL (1998) The counting Stroop: an interference task specialized for functional neuroimaging – validation study with functional MRI. Hum Brain Mapp 6: 270–282PubMedCrossRefGoogle Scholar
  10. Cai W, Leung HC (2011) Rule-guided executive control of response inhibition: functional topography of the inferior frontal cortex. PLoS One 6: e20840CrossRefGoogle Scholar
  11. Camchong J, MacDonald AW 3rd, Nelson B, Bell C, Mueller BA, Specker S, Lim KO (2011) Frontal hyperconnectivity related to discounting and reversal learning in cocaine subjects. Biol Psychiatry 69: 1117–1123PubMedCrossRefGoogle Scholar
  12. Carter CS, MacDonald AW 3rd, Ross LL, Stenger VA (2001) Anterior cingulate cortex activity and impaired self-monitoring of performance in patients with schizophrenia: an event-related fMRI study. Am J Psychiatry 158: 1423–1428PubMedCrossRefGoogle Scholar
  13. Casey BJ, Trainor RJ, Orendi JL, Schubert AB, Nystrom LE, Giedd JN, Castellanos FX, Haxby JV, Noll, DC, Cohen JD, Forman SD, Dahl RE, Rapoport JL (1997) A developmental functional MRI study of prefrontal activation during performance of a Go-No-Go Task. The J Cogn Neurosci 9: 835–847CrossRefGoogle Scholar
  14. Chikazoe J, Konishi S, Asari T, Jimura K, Miyashita Y (2007) Activation of right inferior frontal gyrus during response inhibition across response modalities. J Cogn Neurosci 19: 69–80PubMedCrossRefGoogle Scholar
  15. Chikazoe J, Jimura K, Asari T, Yamashita K, Morimoto H, Hirose S, Miyashita Y, Konishi S (2009) Functional dissociation in right inferior frontal cortex during performance of go/no-go task. Cereb Cortex 19: 146–152PubMedCrossRefGoogle Scholar
  16. Costafreda SG, Fu CHY, Lee L, Everitt B, Brammer MJ, David AS (2006) A systematic review and quantitative appraisal of fMRI studies of verbal fluency: role of the left inferior frontal gyrus. Hum Brain Mapp 27: 799–810PubMedCrossRefGoogle Scholar
  17. Costafreda SG, Fu CH, Picchioni M, Kane F, McDonald C, Prata DP, Kalidindi S, Walshe M, Curtis V, Bramon E, Kravariti E, Marshall N, Toulopoulou T, Barker GJ, David AS, Brammer MJ, Murray RM, McGuire PK (2009) Increased inferior frontal activation during word generation: A marker of genetic risk for schizophrenia but not bipolar disorder? Hum Brain Mapp 30: 3287–3298PubMedCrossRefGoogle Scholar
  18. Coutlee CG, Huettel SA (2012) The functional neuroanatomy of decision making: Prefrontal control of thought and action. Brain Res 1428: 3–12PubMedCrossRefGoogle Scholar
  19. Cubillo A, Halari R, Ecker C, Giampietro V, Taylor E, Rubia K (2010) Reduced activation and inter-regional functional connectivity of fronto-striatal networks in adults with childhood Attention-Deficit Hyperactivity Disorder (ADHD) and persisting symptoms during tasks of motor inhibition and cognitive switching. J Psychiatr Res 44: 629–639PubMedCrossRefGoogle Scholar
  20. Curtis VA, Dixon TA, Morris RG, Bullmore ET, Brammer MJ, Williams SC, Sharma T, Murray RM, McGuire PK (2001) Differential frontal activation in schizophrenia and bipolar illness during verbal fluency. J Affect Disord 66: 111–121PubMedCrossRefGoogle Scholar
  21. D’Esposito M, Detre JA, Alsop DC, Shin RK, Atlas S, Grossman M (1995) The neural basis of the central executive system of working memory. Nature 378: 279–281PubMedCrossRefGoogle Scholar
  22. Dickstein DP, Finger EC, Skup M, Pine DS, Blair JR, Leibenluft E (2010) Altered neural function in pediatric bipolar disorder during reversal learning. Bipolar Disord 12: 707–719PubMedCrossRefGoogle Scholar
  23. Duann JR, Ide JS, Luo X, Li CS (2009) Functional connectivity delineates distinct roles of the inferior frontal cortex and presupplementary motor area in stop signal inhibition. J Neurosci 29: 10171–10179PubMedCrossRefGoogle Scholar
  24. Eslinger PJ, Grattan LM (1993) Frontal lobe and frontal-striatal substrates for different forms of human cognitive flexibility. Neuropsychologia 31: 17–28PubMedCrossRefGoogle Scholar
  25. Fitzgerald PB, Srithiran A, Benitez J, Daskalakis ZZ, Oxley TJ, Kulkarni J, Egan GF (2008) An fMRI study of prefrontal brain activation during multiple tasks in patients with major depressive disorder. Hum Brain Mapp 29: 490–501PubMedCrossRefGoogle Scholar
  26. Floresco SB, Zhang Y, Enomoto T (2009) Neural circuits subserving behavioural flexibility and their relevance to schizophrenia. Behav Brain Res 204: 396–409PubMedCrossRefGoogle Scholar
  27. Garavan H, Ross TJ, Murphy K, Roche RA, Stein EA (2002) Dissociable executive functions in the dynamic control of behavior: inhibition, error detection, and correction. NeuroImage 17: 1820–1829PubMedCrossRefGoogle Scholar
  28. Garavan H, Ross TJ, Kaufman J, Stein EA (2003) A midline rostral-caudal axis for error processing and response conflict monitoring. Neuroimage 20: 1132–1139PubMedCrossRefGoogle Scholar
  29. Gauthier CT, Duyme M, Zanca M, Capron C (2009) Sex and performance level effects on brain activation during a verbal fluency task: a functional magnetic resonance imaging study. Cortex 45: 164–176PubMedCrossRefGoogle Scholar
  30. Goghari VM, MacDonald AW 3rd (2009) The neural basis of cognitive control: response selection and inhibition. Brain Cogn 71: 72–83PubMedCrossRefGoogle Scholar
  31. Grant DA, Berg EA (1948) A behavioral analysis of degree of reinforcement and ease of shifting to new responses in a Weigl-type cardsorting problem. J Exp Psychol 38: 404–411PubMedCrossRefGoogle Scholar
  32. Gruber SA, Rogowska J, Holcomb P, Soraci S, Yurgelun-Todd D (2002) Stroop performance in normal control subjects: an fMRI study. NeuroImage 16: 349–360PubMedCrossRefGoogle Scholar
  33. Gurd JM, Amunts K, Weiss PH, Zafiris O, Zilles K, Marshall JC, Fink GR (2002) Posterior parietal cortex is implicated in continuous switching between verbal fluency tasks: an fMRI study with clinical implications. Brain 125: 1024–1038PubMedCrossRefGoogle Scholar
  34. Gurd JM, Weiss PH, Amunts K, Fink GR (2003) Within-task switching in the verbal domain. Neuroimage 20: S 50–S 57CrossRefGoogle Scholar
  35. Harrison BJ, Shaw M, Yücel M, Purcell R, Brewer WJ, Strother SC, Egan GF, Olver JS, Nathan PJ, Pantelis C (2005) Functional connectivity during Stroop task performance. Neuroimage 24: 181–191PubMedCrossRefGoogle Scholar
  36. Haupt S, Axmacher N, Cohen MX, Elger CE, Fell J (2009) Activation of the caudal anterior cingulate cortex due to task-related interference in an auditory Stroop paradigm. Hum Brain Mapp 30: 3043–3056PubMedCrossRefGoogle Scholar
  37. Henry JD, Crawford JR (2004) Meta-analytic review of verbal fluency performance following focal cortical lesions. Neuropsychology 18: 284–295PubMedCrossRefGoogle Scholar
  38. Herath P, Klingberg T, Young J, Amunts K, Roland P (2001) Neural correlates of dual task interference can be dissociated from those of divided attention: An fMRI study. Cerebr Cort 11: 796–805CrossRefGoogle Scholar
  39. Hester R, Fassbender C, Garavan H (2004) Individual differences in error processing: a review and reanalysis of three event-related fMRI studies using the GO/NOGO task. Cereb Cortex 14: 986–994PubMedCrossRefGoogle Scholar
  40. Heuvel OA Van Den, Groenewegen HJ, Barkhof F, Lazeron RH, van Dyck R, Veltman DJ (2003) Frontostriatal system in planning complexity: a parametric functional magnetic resonance version of Tower of London task. NeuroImage 18: 367–374CrossRefGoogle Scholar
  41. Heuvel OA Van Den, Veltman DJ, Groenewegen HJ, Cath DC, van Balkom AJ, van Hartskamp J, Barkhof F, van Dyck R (2005) Frontalstriatal dysfunction during planning in obsessive-compulsive disorder. Arch Gen Psychiatry 62: 301–309PubMedCrossRefGoogle Scholar
  42. Hirshorn EA, Thompson-Schill SL (2006) Role of the left inferior frontal gyrus in covert word retrieval: neural correlates of switching during verbal fluency. Neuropsychologia 44: 2547–2557PubMedCrossRefGoogle Scholar
  43. Hodgson TL, Tiesman B, Owen AM, Kennard C (2002) Abnormal gaze strategies during problem solving in Parkinson‘s disease. Neuropsychologia 40: 411–422PubMedCrossRefGoogle Scholar
  44. Hughes ME, Fulham WR, Johnston PJ, Michie PT (2012 )Stop-signal response inhibition in schizophrenia: behavioural, event-related potential and functional neuroimaging data. Biol Psychol 89: 220–231PubMedCrossRefGoogle Scholar
  45. Hutton SB, Ettinger U (2006) The antisaccade task as a research tool in psychopathology: a critical review. Psychophysiology 43: 302–313PubMedCrossRefGoogle Scholar
  46. Hyafil A, Summerfield C, Koechlin E (2009) Two mechanisms for task switching in the prefrontal cortex. J Neurosci 29: 5135–5142PubMedCrossRefGoogle Scholar
  47. Jocham G, Klein TA, Neumann J, von Cramon DY, Reuter M, Ullsperger M (2009) Dopamine DRD2 polymorphism alters reversal learning and associated neural activity. J Neurosci 29: 3695–3704PubMedCrossRefGoogle Scholar
  48. Kerns JG, Cohen JD, MacDonald AW 3rd, Johnson MK, Stenger VA, Aizenstein H, Carter CS (2005) Decreased conflict- and error-related activity in the anterior cingulate cortex in subjects with schizophrenia. Am J Psychiatry 162: 1833–1839PubMedCrossRefGoogle Scholar
  49. Klein TA, Endrass T, Kathmann N, Neumann J, von Cramon DY, Ullsperger M (2007) Neural correlates of error awareness. Neuroimage 34: 1774–1781PubMedCrossRefGoogle Scholar
  50. Köchlin E, Basso G, Pietrini P, Panzer S, Grafman J (1999) The role of the anterior prefrontal cortex in human cognition. Nature 399: 148–151CrossRefGoogle Scholar
  51. Konishi S, Kawazu M, Uchida I, Kikyo H, Asakura I, Miyashita Y (1999a) Contribution of working memory to transient activation in human inferior prefrontal cortex during performance of the Wisconsin Card Sorting Test. Cereb Cortex 9: 745–753CrossRefGoogle Scholar
  52. Konishi S, Nakajima K, Uchida I, Kikyo H, Kameyama M, Miyashita Y (1999b) Common inhibitory mechanism in human inferior prefrontal cortex revealed by event-related functional MRI. Brain 122: 981–991CrossRefGoogle Scholar
  53. Konishi S, Hayashi T, Uchida I, Kikyo H, Takahashi E, Miyashita Y (2002) Hemispheric asymmetry in human lateral prefrontal cortex during cognitive set shifting. Proc Natl Acad Sci USA 99: 7803–7808PubMedCrossRefGoogle Scholar
  54. Konishi S, Morimoto H, Jimura K, Asari T, Chikazoe J, Yamashita K, Hirose S, Miyashita Y (2008) Differential superior prefrontal activity on initial versus subsequent shifts in naive subjects. Neuroimage 41: 575–580PubMedCrossRefGoogle Scholar
  55. Konishi S, Hirose S, Jimura K, Chikazoe J, Watanabe T, Kimura HM, Miyashita Y (2010) Medial prefrontal activity during shifting under novel situations. Neurosci Lett 484: 182–186PubMedCrossRefGoogle Scholar
  56. Laurens KR, Ngan ET, Bates AT, Kiehl KA, Liddle PF (2003) Rostral anterior cingulate cortex dysfunction during error processing in schizophrenia. Brain 126: 610–622PubMedCrossRefGoogle Scholar
  57. Leber AB, Turk-Browne NB, Chun MM (2008) Neural predictors of moment- to-moment fluctuations in cognitive flexibility. PNAS 105: 13592–13597PubMedCrossRefGoogle Scholar
  58. Lezak MD, Howieson DB, Bigler ED, Tranel D (2012) Neuropsychological Assessment, 5th ed. Oxford University Press, New YorkGoogle Scholar
  59. Liddle PF, Kiehl KA, Smith AM (2001) Event-related fMRI study of response inhibition. Hum Brain Mapp 12: 100–109PubMedCrossRefGoogle Scholar
  60. Lie CH, Specht K, Marshall JC, Fink GR (2006) Using fMRI to decompose the neural processes underlying the Wisconsin Card Sorting Test. Neuroimage 30: 1038–1049PubMedCrossRefGoogle Scholar
  61. Lurito JT, Kareken DA, Lowe MJ, Chen SH, Mathews VP (2000) Comparison of rhyming and word generation with fMRI. Hum Brain Mapp 10: 99–10PubMedCrossRefGoogle Scholar
  62. Maltby N, Tolin DF, Worhunsky P, O‘Keefe TM, Kiehl KA (2005) Dysfunctional action monitoring hyperactivates frontal-striatal circuits in obsessive-compulsive disorder: an event-related fMRI study. Neuroimage 24: 495–503PubMedCrossRefGoogle Scholar
  63. Melcher T, Gruber O (2009) Decomposing interference during Stroop performance into different conflict factors: an event-related fMRI study. Cortex 45: 189–200PubMedCrossRefGoogle Scholar
  64. Menon V, Adleman NE, White CD, Glover GH, Reiss AL (2001) Error-related brain activation during a Go/NoGo response inhibition task. Hum Brain Mapp 12: 131–143PubMedCrossRefGoogle Scholar
  65. Monchi O, Petrides M, Petre V, Worsley K, Dagher A (2001) Wisconsin card sorting revisited: distinct neural circuits participating in different stages of the task identified by event-related functional magnetic resonance imaging. J Neurosci 21: 7733–7741PubMedGoogle Scholar
  66. Monchi O, Petrides M, Julien D, Postuma R, Worsley K, Dagher A (2004) Neural bases of set-shifting deficits in Parkinson‘s disease. J Neurosci 24: 702–710PubMedCrossRefGoogle Scholar
  67. Newman SD, Carpenter PA, Varma S, Just MA (2003) Frontal and parietal participation in problem solving in the Tower of London: fMRI and computational modeling of planning and high-level perception. Neuropsychologia 41: 1668–1682PubMedCrossRefGoogle Scholar
  68. Nyhus E, Barcelo F (2009) The Wisconsin Card Sorting Test and the cognitive assessment of prefrontal executive functions: A critical update. Brain Cogn 71: 437–451PubMedCrossRefGoogle Scholar
  69. Okada G, Okamoto Y, Morinobu S, Yamawaki S, Yokota N (2003) Attenuated left prefrontal activation during a verbal fluency task in patients with depression. Neuropsychobiology 47: 21–26PubMedCrossRefGoogle Scholar
  70. Okada G, Okamoto Y, Yamashita H, Ueda K, Takami H, Yamawaki S (2009) Attenuated prefrontal activation during a verbal fluency task in remitted major depression. Psychiatry Clin Neurosci 63: 423–425PubMedCrossRefGoogle Scholar
  71. Paulus MP, Hozack N, Frank L, Brown GG (2002) Error rate and out-come predictability affect neural activation in prefrontal cortex and anterior cingulate during decision-making. NeuroImage 15: 836–846PubMedCrossRefGoogle Scholar
  72. Peterson BS, Kane MJ, Alexander GM, Lacadie C, Skudlarski P, Leung HC, May J, Gore JC (2002) An event-related functional MRI study comparing interference effects in the Simon and Stroop tasks. Brain Res Cogn Brain Res 13: 427–440PubMedCrossRefGoogle Scholar
  73. Pihlajamaki M, Tanila H, Hanninen T, Kononen M, Laakso M, Partanen K, Soininen H, Aronen HJ (2000) Verbal fluency activates the left medial temporal lobe: a functional magnetic resonance imaging study. Ann Neurol 47: 470–476PubMedCrossRefGoogle Scholar
  74. Polk TA, Drake RM, Jonides JJ, Smith MR, Smith EE (2008) Attention enhances the neural processing of relevant features and suppresses the processing of irrelevant features in humans: a functional magnetic resonance imaging study of the Stroop task. J Neurosci 28: 13786–13792PubMedCrossRefGoogle Scholar
  75. Polli FE, Barton JJ, Thakkar KN, Greve DN, Goff DC, Rauch SL, Manoach DS (2007) Reduced error-related activation in two anterior cingulate circuits is related to impaired performance in schizophrenia. Brain 131: 971–986PubMedCrossRefGoogle Scholar
  76. Ragland JD, Moelter ST, Bhati MT, Valdez JN, Kohler CG, Siegel SJ, Gur RC, Gur RE (2008) Effect of retrieval effort and switching demand on fMRI activation during semantic word generation in schizophrenia. Schizophr Res 99: 312–323PubMedCrossRefGoogle Scholar
  77. Rasser PE, Johnston P, Lagopoulos J, Ward PB, Schall U, Thienel R, Bender S, Toga AW, Thompson PM (2005) Functional MRI BOLD response to Tower of London performance in first-episode schizophrenia patients using cortical pattern matching. NeuroImage 26: 941–951PubMedCrossRefGoogle Scholar
  78. Remijnse PL, Nielen MM, van Balkom AJ, Hendriks GJ, Hoogendijk WJ, Uylings HB, Veltman DJ (2009) Differential frontal-striatal and paralimbic activity during reversal learning in major depressive disorder and obsessive-compulsive disorder. Psychol Med 39: 1503–1518PubMedCrossRefGoogle Scholar
  79. Ridderinkhof KR, Ullsperger M, Crone EA, Nieuwenhuis S (2004) The role of the medial frontal cortex in cognitive control. Science 306: 443–447PubMedCrossRefGoogle Scholar
  80. Riehemann S, Volz HP, Stützer P, Smesny S, Gaser C, Sauer H (2001) Hypofrontality in neuroleptic-naive schizophrenic patients during the Wisconsin Card Sorting Test – a fMRI study. Eur Arch Psychiatry Clin Neurosci 251: 66–71PubMedCrossRefGoogle Scholar
  81. Roberts KL, Hall DA (2008) Examining a supramodal network for conflict processing: a systematic review and novel functional magnetic resonance imaging data for related visual and auditory stroop tasks. J Cogn Neurosci 20: 1063–1078PubMedCrossRefGoogle Scholar
  82. Rogers RD, Monsell S (1995) Costs of a predictible switch between simple cognitive tasks. J Exp Psychol Gen 124: 207–231CrossRefGoogle Scholar
  83. Rubia K, Smith AB, Brammer M, Taylor E (2003) Right inferior prefrontal cortex mediates response inhibition while mesial prefrontal cortex is responsible for error detection. Neuroimage 20: 351–358PubMedCrossRefGoogle Scholar
  84. Rubia K, Smith AB, Brammer MJ, Toone B, Taylor E (2005) Abnormal brain activation during inhibition and error detection in medication-naive adolescents with ADHD. Am J Psychiatry 162: 1067–1075PubMedCrossRefGoogle Scholar
  85. Rushworth MF, Walton ME, Kennerley SW, Bannerman DM (2004) Action sets and decisions in the medial frontal cortex. Trends Cogn Sci 8: 410–417PubMedCrossRefGoogle Scholar
  86. Rushworth MF, Noonan MP, Boorman ED, Walton ME, Behrens TE (2011) Frontal cortex and reward-guided learning and decisionmaking. Neuron 70: 1054–1069PubMedCrossRefGoogle Scholar
  87. Schall U, Johnston P, Lagopoulos J, Jüptner M, Jentzen W, Thienel R, Dittmann-Balçar A, Bender S, Ward PB (2003) Functional brain maps of Tower of London performance: a positron emission tomography and functional magnetic imaging study. NeuroImage 20: 1154–1161PubMedCrossRefGoogle Scholar
  88. Schlosser R, Hunsche S, Gawehn J, Grunert P, Vucurevic G, Gesierich T, Kaufmann B, Rossbach W, Stoeter P (2002) Characterization of BOLD-fMRI signal during a verbal fluency paradigm in patients with intracerebral tumors affecting the frontal lobe. Magn Reson Imaging 20: 7–16PubMedCrossRefGoogle Scholar
  89. Shallice T (1982) Specific impairments of planning. Philos Trans R Soc Lond B Biol Sci 298: 199–209PubMedCrossRefGoogle Scholar
  90. Simmonds DJ, Pekar JJ, Mostofsky SH (2008) Meta-analysis of Go/No-go tasks demonstrating that fMRI activation associated with response inhibition is task-dependent. Neuropsychologia 46: 224–232PubMedCrossRefGoogle Scholar
  91. Simon HA (1975) The functional equivalence of problem solving skills. Cognit Psychol 7: 268–288CrossRefGoogle Scholar
  92. Smith AB, Taylor E, Brammer M, Rubia K (2004) Neural correlates of switching set as measured in fast, event-related functional magnetic resonance imaging. Hum Brain Mapp 21: 247–256PubMedCrossRefGoogle Scholar
  93. Sozda CN, Larson MJ, Kaufman DA, Schmalfuss IM, Perlstein WM (2011) Error-related processing following severe traumatic brain injury: An event-related functional magnetic resonance imaging (fMRI) study. Int J Psychophysiol 82: 97–106PubMedCrossRefGoogle Scholar
  94. Specht K, Lie CH, Shah NJ, Fink GR (2009) Disentangling the prefrontal network for rule selection by means of a non-verbal variant of the Wisconsin Card Sorting Test (WCST). Hum Brain Mapp 30: 1734–1743PubMedCrossRefGoogle Scholar
  95. Stelzel C, Kraft A, Brandt SA, Schubert T (2008) Dissociable neural effects of task order control and task set maintenance during dualtask processing. J Cogn Neurosi 20: 613–628CrossRefGoogle Scholar
  96. Strakowski SM, Adler CM, Holland SK, Mills NP, DelBello MP, Eliassen JC (2005) Abnormal FMRI brain activation in euthymic bipolar disorder patients during a counting Stroop interference task. Am J Psychiatry 162: 1697–1705PubMedCrossRefGoogle Scholar
  97. Stroop JR (1935) Studies of interference in serial verbal reactions. J Exp Psychol 28: 643–662CrossRefGoogle Scholar
  98. Sylvester CY, Shimamura AP (2002) Evidence for intact semantic representations in patients with frontal lobe lesions. Neuropsychology 16: 197–207PubMedCrossRefGoogle Scholar
  99. Sylvester CY, Wager TD, Lacey SC, Hernandez L, Nichols TE, Smith EE, Jonides J (2003) Switching attention and resolving interference: fMRI measures of executive functions. Neuropsychologia 41: 357–370PubMedCrossRefGoogle Scholar
  100. Szameitat AJ, Schubert T, Müller K, von Cramon DY (2002) Localization of executive functions in dual-task performance with fMRI. J Cogn Neurosci 14: 1184–1199CrossRefGoogle Scholar
  101. Takami H, Okamoto Y, Yamashita H, Okada G, Yamawaki S (2007) Attenuated anterior cingulate activation during a verbal fluency task in elderly patients with a history of multiple-episode depression. Am J Geriatr Psychiatry 15: 594–603PubMedCrossRefGoogle Scholar
  102. Thakkar KN, Polli FE, Joseph RM, Tuch DS, Hadjikhani N, Barton JJ, Manoach DS (2008) Response monitoring, repetitive behaviour and anterior cingulate abnormalities in autism spectrum disorders (ASD). Brain 131: 2464–2478PubMedCrossRefGoogle Scholar
  103. Ullsperger M, von Cramon DY (2001) Subprocesses of performance monitoring: a dissociation of error processing and response competition revealed by event-related fMRI and ERPs. Neuroimage 14: 1387–1401PubMedCrossRefGoogle Scholar
  104. Ullsperger M, von Cramon DY (2003) Error monitoring using external feedback: specific roles of the habenular complex, the reward system, and the cingulate motor area revealed by functional magnetic resonance imaging. J Neurosci 23: 4308–4314PubMedGoogle Scholar
  105. Ullsperger M, Harsay HA, Wessel JR, Ridderinkhof KR (2010) Conscious perception of errors and its relation to the anterior insula. Brain Struct Funct 214: 629–643PubMedCrossRefGoogle Scholar
  106. Volz HP, Gaser C, Hager F, Rzanny R, Mentzel HJ, Kreitschmann-Andermahr I, Kaiser WA, Sauer H (1997) Brain activation during cognitive stimulation with the Wisconsin Card Sorting Test – a functional MRI study on healthy volunteers and schizophrenics. Psychiatry Res 75: 145–157PubMedCrossRefGoogle Scholar
  107. Wagner G, Koch K, Reichenbach JR, Sauer H, Schlösser RG (2006a) The special involvement of the rostrolateral prefrontal cortex in planning abilities: an event-related fMRI study with the Tower of London paradigm. Neuropsychologia 44: 2337–2347CrossRefGoogle Scholar
  108. Wagner G, Sinsel E, Sobanski T, Köhler S, Marinou V, Mentzel HJ, Sauer H, Schlösser RG (2006b) Cortical inefficiency in patients with unipolar depression: an event-related fMRI study with the Stroop task. Biol Psychiatry 59: 958–965CrossRefGoogle Scholar
  109. Walton ME, Devlin JT, Rushworth MF (2004) Interactions between decision making and performance monitoring within prefrontal cortex. Nat Neurosci 7: 1259–1265PubMedCrossRefGoogle Scholar
  110. Walton ME, Croxson PL, Behrens TE, Kennerley SW, Rushworth MF (2007) Adaptive decision making and value in the anterior cingulate cortex. Neuroimage 36: 142–154CrossRefGoogle Scholar
  111. Waltz JA, Gold JM (2007) Probabilistic reversal learning impairments in schizophrenia: further evidence of orbitofrontal dysfunction. Schizophr Res 93: 296–303PubMedCrossRefGoogle Scholar
  112. Wilmsmeier A, Ohrmann P, Suslow T, Siegmund A, Koelkebeck K, Rothermundt M, Kugel H, Arolt V, Bauer J, Pedersen A (2010) Neural correlates of set-shifting: decomposing executive functions in schizophrenia. J Psychiatry Neurosci 35: 321–329PubMedCrossRefGoogle Scholar
  113. Wolf RC, Plichta MM, Sambataro F, Fallgatter AJ, Jacob C, Lesch KP, Herrmann MJ, Schönfeldt-Lecuona C, Connemann BJ, Grön G, Vasic N (2009) Regional brain activation changes and abnormal functional connectivity of the ventrolateral prefrontal cortex during working memory processing in adults with attention-deficit/ hyperactivity disorder. Hum Brain Mapp 30: 2252–2266PubMedCrossRefGoogle Scholar
  114. Yetkin FZ, Hammeke TA, Swanson SJ, Morris GL, Mueller WM, McAuliffe TL, Haughton VM (1995) A comparison of functional MR activation patterns during silent and audible language tasks. Am J Neuroradiol 16: 1087–1092PubMedGoogle Scholar
  115. Zysset S, Müller K, Lohmann G, von Cramon DY (2001) Color-word matching Stroop task: separating interference and response conflict. NeuroImage 13: 29–36PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Nina Seiferth
    • 1
  • Renate Thienel
    • 2
  1. 1.Klinik für Psychiatrie und Psychotherapie Charité Campus MitteCharité – Universitätsmedizin BerlinBerlin
  2. 2.Priority Research Centre for Translational Neuroscience and Mental HealthUniversity of NewcastleWaratah NSWAustralia

Personalised recommendations