Advertisement

Präoperative fMRT-Diagnostik, Neuronavigation

  • Daniela Kuhnt
  • Miriam Helen Anna Bauer
  • Christopher Nimsky

Zusammenfassung

Die Neuronavigation spielt in der modernen Neurochirurgie eine wichtige Rolle und bietet die Möglichkeit der intraoperativen Visualisierung von Zielstrukturen, aber auch funktionellen Risikostrukturen. Nach Einführung in die Grundprinzipien der Navigation sowie der sog. multimodalen Neuronavigation soll hier detaillierter auf die präoperative fMRT- und DTI-Diagnostik sowie deren intraoperativen Einsatz eingegangen werden. Die intraoperative Visualisierung von funktionellen Strukturen ist bei manchen neurochirurgischen Eingriffen von essenzieller Bedeutung. Hervorzuheben ist hier die Resektion hirneigener Tumoren. Im neurochirurgischen Behandlungskonzept von Tumoren stellt die maximal sichere Tumorvolumenresektion den operativen Standard für intrazerebrale Läsionen dar. Was für benigne Prozesse unbestritten ist, wurde für nieder- und höhergradige hirneigene Tumore mit ihrem histopathologisch gesicherten infiltrativen Wachstumsmuster in der Literatur lange diskutiert (Keles et al. 2006; Pope et al. 2005), da eine Korrelation zwischen maximaler Tumorvolumenreduktion und verlängerter mittlerer Überlebenszeit der Patienten lange nicht sicher nachgewiesen werden konnte. Mittlerweile favorisiert die aktuelle Literatur jedoch auch für diese Art von Läsionen die maximale Tumorvolumenreduktion bei gleichzeitigem Erhalt der neurologischen Funktionalitäten als positiv prädiktiven Faktor für ein verbessertes Outcome der Patienten (Claus et al. 2005; Keles et al. 1999; Lacroix et al. 2001; Sanai u. Berger 2008; Stummer et al. 2006). Die Abgrenzung der Tumorgrenzen vom physiologischen Hirnparenchym stellt jedoch auch für den erfahrenen Neurochirurgen eine Herausforderung dar, da sich pathologisches und gesundes Gewebe auch unter Mikroskopvergrößerung oftmals nicht signifikant unterscheiden. Um dieses Ziel der maximal sicheren Resektion zu erreichen, macht sich die Neurochirurgie die sog. computergestützte multimodale Neuronavigation zunutze.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Anik I, Anik Y, Ceylan S, Genc O, Altintas O, Ozdamar D, Baykal CD (2011) Evaluation of early visual recovery in pituitary macroadenoms after endoscopic endonasal transsphenoidal surgery: Qunatitative assessment with diffusion tensor imaging (DTI). Acta Neurochir (Wien) 153: 831–842CrossRefGoogle Scholar
  2. Arbel T, Morandi X, Comeau RM, Collins DL (2004) Automatic non-linear MRI-ultrasound registration for the correction of intra-operative brain deformations. Comput Aided Surg 9: 123–136PubMedGoogle Scholar
  3. Bandettini A (2009) Functional MRI Limitations and Aspirations. In: Kraft E, Gulyas B, Pöppel E (eds) Neural Correlates of Thinking. Springer, Berlin, pp 15–38CrossRefGoogle Scholar
  4. Barnett GH, Miller DW, Weisenberger J (1999) Frameless stereotaxy with scalp-applied fiducial markers for brain biopsy procedures: experience in 218 cases. J Neurosurg 91: 569–576PubMedCrossRefGoogle Scholar
  5. Basser PJ, Mattiello J, LeBihan D (1994) MR diffusion tensor spectroscopy and imaging. Biophys J 66: 259–267PubMedCrossRefGoogle Scholar
  6. Basser PJ, Pajevic S, Pierpaoli C, Duda J, Aldroubi A (2000) In vivo fiber tractography using DT-MRI data. Magn Reson Med 44:625-632PubMedCrossRefGoogle Scholar
  7. Binder JR (2011) Preoperative prediction of verbal episodic memory outcome using FMRI. Neurosurg Clin N Am 22: 219–232, ixPubMedCrossRefGoogle Scholar
  8. Binder JR, Sabsevitz DS, Swanson SJ, Hammeke TA, Raghavan M, Mueller WM (2008) Use of preoperative functional MRI to predict verbal memory decline after temporal lobe epilepsy surgery. Epilepsia 49: 1377–1394PubMedCrossRefGoogle Scholar
  9. Chen X, Weigel D, Ganslandt O, Buchfelder M, Nimsky C (2009) Prediction of visual field deficits by diffusion tensor imaging in temporal lobe epilepsy surgery. NeuroImage 45: 286–297PubMedCrossRefGoogle Scholar
  10. Claus EB, Horlacher A, Hsu L, Schwartz RB, Dello-Iacono D, Talos F, Jolesz FA, Black PM (2005) Survival rates in patients with lowgrade glioma after intraoperative magnetic resonance image guidance. Cancer 103: 1227–1233PubMedCrossRefGoogle Scholar
  11. Coenen VA, Krings T, Mayfrank L, Polin RS, Reinges MH, Thron A, Gilsbach JM (2001) Three-dimensional visualization of the pyramidal tract in a neuronavigation system during brain tumor surgery: first experiences and technical note. Neurosurgery 49: 86–92, discussion 92–83PubMedGoogle Scholar
  12. Deblaere K, Backes WH, Hofman P, Vandemaele P, Boon PA, Vonck K, Boon P, Troost J, Vermeulen J, Wilmink J, Achten E, Aldenkamp A (2002) Developing a comprehensive presurgical functional MRI protocol for patients with intractable temporal lobe epilepsy: a pilot study. Neuroradiology 44: 667–673PubMedCrossRefGoogle Scholar
  13. Ding S, Miga MI, Noble JH, Cao A, Dumpuri P, Thompson RC, Dawant BM (2009) Semiautomatic registration of pre- and postbrain tumor resection laser range data: method and validation. IEEE Trans Biomed Eng 56: 770–780PubMedCrossRefGoogle Scholar
  14. Duffau H, Capelle L, Sichez N, Denvil D, Lopez M, Sichez JP, Bitar A, Fohanno D (2002) Intraoperative mapping of the subcortical language pathways using direct stimulations. An anatomo-functional study. Brain 125(Pt 1): 199–214PubMedCrossRefGoogle Scholar
  15. Ganslandt O, Fahlbusch R, Nimsky C, Kober H, Möller M, Steinmeier R, Romstock J, Vieth J (1999) Functional neuronavigation with magnetoencephalography: outcome in 50 patients with lesions around the motor cortex. J Neurosurg 91: 73–79PubMedCrossRefGoogle Scholar
  16. Hastreiter P, Rezk-Salama C, Soza G, Bauer M, Greiner G, Fahlbusch R, Ganslandt O, Nimsky C (2004) Strategies for brain shift evaluation. Med Image Anal 8: 447–464PubMedCrossRefGoogle Scholar
  17. Keles GE, Anderson B, Berger MS (1999) The effect of extent of resection on time to tumor progression and survival in patients with glioblastoma multiforme of the cerebral hemisphere. Surg Neurol 52: 371–379PubMedCrossRefGoogle Scholar
  18. Keles GE, Lundin DA, Lamborn KR, Chang EF, Ojemann G, Berger MS (2004) Intraoperative subcortical stimulation mapping for hemispherical perirolandic gliomas located within or adjacent to the descending motor pathways: evaluation of morbidity and assessment of functional outcome in 294 patients. J Neurosurg 100: 369–375PubMedCrossRefGoogle Scholar
  19. Keles GE, Chang EF, Lamborn KR, Tihan T, Chang CJ, Chang SM, Berger MS (2006) Volumetric extent of resection and residual contrast enhancement on initial surgery as predictors of outcome in adult patients with hemispheric anaplastic astrocytoma. J Neurosurg 105: 34–40PubMedCrossRefGoogle Scholar
  20. Kleiser R, Staempfli P, Valavanis A, Boesiger P, Kollias S (2011) Impact of fMRI-guided advanced DTI fiber tracking techniques on their clinical applications in patients with brain tumors. Neuroradiology 1: 37-46Google Scholar
  21. Kozak J, Nesper M, Fischer M, Lutze T, Göggelmann A, Hassfeld S, Wetter T (2002) Semiautomated registration using new markers for assessing the accuracy of a navigation system. Comput Aided Surg 7: 11–24PubMedCrossRefGoogle Scholar
  22. Kuhnt D, Ganslandt O, Schlaffer SM, Buchfelder M, Nimsky C (2011) Quantification of glioma removal by intraoperative high-field magnetic resonance imaging – an update. Neurosurgery 69: 852–862, discussion 862–863PubMedCrossRefGoogle Scholar
  23. Kuhnt D, Bauer MH, Becker A, Merhof D, Zolal A, Richter M, Grummich P, Ganslandt O, Buchfelder M, Nimsky C (2012) Intraoperative visualization of fiber tracking based reconstruction of language pathways in glioma surgery. Neurosurgery 70: 911–919; discussion 919–920PubMedCrossRefGoogle Scholar
  24. Lacroix M, Abi-Said D, Fourney DR, Gokaslan ZL, Shi W, DeMonte F, Lang FF, McCutcheon IE, Hassenbusch SJ, Holland E, Hess K, Michael C, Miller D, Sawaya R (2001) A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg 95: 190–198PubMedCrossRefGoogle Scholar
  25. Le Bihan D, van Zijl P (2002) From the diffusion coefficient to the diffusion tensor. NMR Biomed 15:431-434PubMedCrossRefGoogle Scholar
  26. Le Bihan D, Mangin JF, Poupon C, Clark CA, Pappata S, Molko N, Chabriat H (2001) Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging 13:534-546PubMedCrossRefGoogle Scholar
  27. Leksell L (1949) Stereotaxic apparatus for intracerebral surgery. Acta Chir Scand 99: 229–233Google Scholar
  28. Letteboer MM, Willems PW, Viergever MA, Niessen WJ (2005) Brain shift estimation in image-guided neurosurgery using 3-D ultrasound. IEEE Trans Biomed Eng 52: 268–276PubMedCrossRefGoogle Scholar
  29. Letteboer M, Hellier P, Rueckert D, Willems PW, Niessen W (2004) Nonrigid registration of intraoperatively acquired 3D ultrasound data of brain tumours. Perspective In Image-Guided Surgery: 11–18Google Scholar
  30. Mahdavi A, Houshmand S, Oghabian MA, Zarei M, Shoar MH, Ghanaati H (2011) Developing optimized fMRI protocol for clinical use: Comparison of different language paradigms. J Magn Reson Imaging 34: 413–419PubMedCrossRefGoogle Scholar
  31. Mori S (2007) Introduction to Diffusion Tensor Imaging, ed 1. Elsevier, AmsterdamGoogle Scholar
  32. Mori S, van Zijl PC (2002) Fiber tracking: principles and strategies – a technical review. NMR Biomed 15:468-480PubMedCrossRefGoogle Scholar
  33. Nabavi A, Black PM, Gering DT, Westin CF, Mehta V, Pergolizzi RS Jr, Ferrant M, Warfield SK, Hata N, Schwartz RB, Wells WM 3rd, Kikinis R, Jolesz FA (2001) Serial intraoperative magnetic resonance imaging of brain shift. Neurosurgery 48: 787–797, discussion 797–788PubMedGoogle Scholar
  34. Nimsky C, Ganslandt, O, Kober H, Moller M, Ulmer S, Tomandl B, Fahlbusch R (1999) Integration of functional magnetic resonance imaging supported by magnetoencephalography in functional neuronavigation. Neurosurgery 44: 1249–1255PubMedGoogle Scholar
  35. Nimsky C, Ganslandt O, Cerny S, Hastreiter P, Greiner G, Fahlbusch R (2000) Quantification of, visualization of, and compensation for brain shift using intraoperative magnetic resonance imaging. Neurosurgery 47: 1070–1079, discussion 1079–1080PubMedCrossRefGoogle Scholar
  36. Nimsky C, Ganslandt O, Hastreiter P, Fahlbusch R (2001) Intraoperative compensation for brain shift. Surg Neurol 56: 357–364, discussion 364–355PubMedCrossRefGoogle Scholar
  37. Nimsky C, Ganslandt O, Hastreiter P, Wang R, Benner T, Sorensen AG, Fahlbusch R (2005a) Intraoperative diffusion-tensor MR imaging: shifting of white matter tracts during neurosurgical procedures – initial experience. Radiology 234: 218–225CrossRefGoogle Scholar
  38. Nimsky C, Ganslandt O, Hastreiter P, Wang R, Benner T, Sorensen AG, Fahlbusch R (2005b) Preoperative and intraoperative diffusion tensor imaging-based fiber tracking in glioma surgery. Neurosurgery 56: 130–137, discussion 138Google Scholar
  39. Nimsky C, Ganslandt O, Merhof D, Sorensen AG, Fahlbusch R (2006) Intraoperative visualization of the pyramidal tract by diffusiontensor-imaging-based fiber tracking. NeuroImage 30: 1219–1229PubMedCrossRefGoogle Scholar
  40. Nimsky C, Ganslandt O, Weigel D, Keller B von, Stadlbauer A, Akutsu H, Hammen T, Buchfelder M (2008) Intraoperative tractography and neuronavigation of the pyramidal tract. Jpn J Neurosurg 17: 21–26Google Scholar
  41. Nossek E, Korn A, Shahar T, Kanner AA, Yaffe H, Marcovici D, Ben-Harosh C, Ben Ami H, Weinstein M, Shapira-Lichter I, Constantini S, Hendler T, Ram Z (2011) Intraoperative mapping and monitoring of the corticospinal tracts with neurophysiological assessment and 3-dimensional ultrasonography-based navigation. Clinical article. J Neurosurg 114: 738–746PubMedCrossRefGoogle Scholar
  42. Ohue S, Kumon Y, Nagato S, Kohno S, Harada H, Nakagawa K, Kikuchi K, Miki H, Ohnishi T (2010) Evaluation of intraoperative brain shift using an ultrasound-linked navigation system for brain tumor surgery. Neurol Med Chir (Tokyo) 50: 291–300CrossRefGoogle Scholar
  43. Pope WB, Sayre J, Perlina A, Villablanca JP, Mischel PS, Cloughesy TF (2005) MR imaging correlates of survival in patients with highgrade gliomas. AJNR Am J Neuroradiol 26: 2466–2474PubMedGoogle Scholar
  44. Raabe A, Krishnan R, Wolff R, Hermann E, Zimmermann M, Seifert V (2002) Laser surface scanning for patient registration in intracranial image-guided surgery. Neurosurgery 50: 797–801, discussion 802–793PubMedCrossRefGoogle Scholar
  45. Roberts DW, Miga MI, Hartov A, Eisner S, Lemery JM, Kennedy FE, Paulsen KD (1999) Intraoperatively updated neuroimaging using brain modeling and sparse data. Neurosurgery 45: 1199–1206, discussion 1206–1197PubMedCrossRefGoogle Scholar
  46. Romstoeck J, Fahlbusch R, Ganslandt O, Nimsky C, Strauss C (2002) Localisation of the sensorimotor cortex during surgery for brain tumours: feasibility and waveform patterns of somatosensory evoked potentials. JNNP 72: 221–229Google Scholar
  47. Roux FE, Boulanouar K, Lotterie JA, Mejdoubi M, LeSage JP, Berry I (2003) Language functional magnetic resonance imaging in preoperative assessment of language areas: correlation with direct cortical stimulation. Neurosurgery 52: 1335–1345, discussion 1345–1337PubMedCrossRefGoogle Scholar
  48. Rutten GJ, van Rijen PC, van Veelen CW, Ramsey NF (1999) Language area localization with three-dimensional functional magnetic resonance imaging matches intrasulcal electrostimulation in Broca‘ s area. Ann Neurol 46: 405–408PubMedCrossRefGoogle Scholar
  49. Sanai N, Berger MS (2008) Glioma extent of resection and its impact on patient outcome. Neurosurgery 62: 753–764, discussion 264–756PubMedCrossRefGoogle Scholar
  50. Skrinjar O, Nabavi A, Duncan J (2002) Model-driven brain shift compensation. Med Image Anal 6: 361–373PubMedCrossRefGoogle Scholar
  51. Soza G, Grosso R, Labsik U, Nimsky C, Fahlbusch R, Greiner G, Hastreiter P (2003) Fast and adaptive finite element approach for modeling brain shift. Comput Aided Surg 8: 241–246PubMedCrossRefGoogle Scholar
  52. Spiegel EA, Wycis HAT, Marks M, Lee A (1947) Stereotactic apparatus for operations on the human brain. Science 106: 349–350PubMedCrossRefGoogle Scholar
  53. Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F, Reulen HJ, ALA-Glioma Study Group (2006) Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol 7: 392–401PubMedCrossRefGoogle Scholar
  54. Talairach J, Hecaen M, David M, Monnier M, Ajuriaguerra J (1949) Recherches sur la coagulation therapeutique des structures sous corticales chez l‘homme. Rev Neurol 81: 4–24Google Scholar
  55. Tirakotai W, Miller D, Heinze S, Benes L, Bertalanffy H, Sure U (2006) A novel platform for image-guided ultrasound. Neurosurgery 58: 710–718, discussion 710–718PubMedCrossRefGoogle Scholar
  56. Wengenroth M, Blatow M, Guenther J, Akbar M, Tronnier VM, Stippich C (2011) Diagnostic benefits of presurgical fMRI in patients with brain tumours in the primary sensorimotor cortex. Eur Radiol 21: 1517–1525PubMedCrossRefGoogle Scholar
  57. Wu JS, Zhou LF, Tang WJ, Mao Y, Hu J, Song YY, Hong XN, Du GH (2007) Clinical evaluation and follow-up outcome of diffusion tensor imaging-based functional neuronavigation: a prospective, controlled, study in patients with gliomas involving pyramidal trats. Neurosurgery 61: 935–948, discussion 948–949PubMedCrossRefGoogle Scholar
  58. Zhuang DX, Liu YX, Wu JS, Yao CJ, Mao Y, Zhang CX, Wang MN, Wang W, Zhou LF (2011) A sparse intraoperative data-driven biomechanical model to compensate for brain shift during neuronavigation. AJNR Am J Neuroradiol 32: 395–402PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Daniela Kuhnt
    • 1
  • Miriam Helen Anna Bauer
    • 1
  • Christopher Nimsky
    • 1
  1. 1.Klinik für NeurochirurgieUniversitätsklinikum Gießen und Marburg GmbH, Standort MarburgMarburg

Personalised recommendations