Advertisement

Saint-Venant Decay Problems in Piezoelectricity

  • Qing-Hua Qin

Abstract

As an application of the symplectic mechanics described in the previous chapter, Saint-Venant decay analysis of piezoelectric strips is presented in this chapter. Applications of state space approach to the Saint-Venant decay problem of piezoelectric laminates are also discussed. Particularly, a mixed-variable state space model for dissimilar piezoelectric laminates and multilayered graded piezoelectric materials is described. Further formulations for decay analysis of piezoelectric-piezomagnetic sandwich structures are discussed.

Keywords

Decay Rate Piezoelectric Material Versus Versus Versus Versus Versus Antiplane Shear State Space Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Saint-Venant AJCB: Memoire sur la Torsion des Prismes. Mem. Divers Savants 14, 233–560 (1855).Google Scholar
  2. [2]
    Qin QH, Wang JS: Hamiltonian system for analyzing Saint-Venant end effects of piezoelectric strips. Journal of Mechanics and MEMS 1(1), 59–71 (2009).Google Scholar
  3. [3]
    Tarn JQ, Huang LJ: Saint-Venant end effects in multilayered piezoelectric laminates. International Journal of Solids and Structures 39(19), 4979–4998 (2002).MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    Xue Y, Liu J: Decay rate of Saint-Venant end effects for plane deformations of piezoelectric-piezomagnetic sandwich structures. Acta Mechanica Solida Sinica 23(5), 407–419 (2010).MathSciNetGoogle Scholar
  5. [5]
    He XQ, Wang JS, Qin QH: Saint-Venant decay analysis of FGPM laminates and dissimilar piezoelectric laminates. Mechanics of Materials 39(12), 1053–1065 (2007).CrossRefGoogle Scholar
  6. [6]
    Love AEH: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1927).zbMATHGoogle Scholar
  7. [7]
    Horgan CO: Recent developments concerning Saint-Venant’s principle: an update. Applied Mechanics Reviews 42,295–303 (1989).MathSciNetCrossRefGoogle Scholar
  8. [8]
    Horgan CO: Recent developments concerning Saint-Venant’s principle: a second update. Applied Mechanics Reviews 49, s101–s111 (1996).CrossRefGoogle Scholar
  9. [9]
    Batra RC, Yang JS: Saint-Venants principle in linear piezoelectricity. Journal of Elasticity 38(2), 209–218 (1995).MathSciNetzbMATHCrossRefGoogle Scholar
  10. [10]
    Batra RC, Zhong X: Saint-Venant’s principle for a helical piezoelectric body. Journal of Elasticity 43(1), 69–79 (1996).MathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    Fan H: Decay-rates in a piezoelectric strip. International Journal of Engineering Science 33(8), 1095–1103 (1995).MathSciNetzbMATHCrossRefGoogle Scholar
  12. [12]
    Ruan XP, Danforth SC, Safari A, Chou TW: Saint-Venant end effects in piezoceramic materials. International Journal of Solids and Structures 37(19), 2625–2637 (2000).MathSciNetzbMATHCrossRefGoogle Scholar
  13. [13]
    Borrelli A, Horgan CO, Patria MC: Exponential decay of end effects in anti-plane shear for functionally graded piezoelectric materials. Proceedings of the Royal Society of London Series A-Mathematical Physical and Engineering Sciences 460(2044), 1193–1212 (2004).MathSciNetzbMATHCrossRefGoogle Scholar
  14. [14]
    Borrelli A, Horgan CO, Patria MC: Saint-Venant end effects for plane deformations of linear piezoelectric solids. International Journal of Solids and Structures 43(5), 943–956 (2006).MathSciNetzbMATHCrossRefGoogle Scholar
  15. [15]
    Bisegna P: The Saint-Venant problem for monoclinic piezoelectric cylinders. Zeitschrift Fur Angewandte Mathematik Und Mechanik 78(3), 147–165 (1998).MathSciNetzbMATHCrossRefGoogle Scholar
  16. [16]
    Rovenski V, Harash E, Abramovich H: Saint-Venant’s problem for homogeneous piezoelectric beams. Journal of Applied Mechanics-Transactions of the ASME 74(6), 1095–1103 (2007).CrossRefGoogle Scholar
  17. [17]
    Vidoli S, Batra RC, dell’Isola F: Saint-Venant’s problem for a second-order piezoelectric prismatic bar. International Journal of Engineering Science 38(1), 21–45 (2000).MathSciNetzbMATHCrossRefGoogle Scholar
  18. [18]
    Zhong WX, Williams FW: Physical interpretation of the symplectic orthogonality of the eigensolutions of a Hamiltonian or symplectic matrix. Computers and Structures 49, 749–750 (1993).MathSciNetzbMATHCrossRefGoogle Scholar
  19. [19]
    Yao WA, Zhong WX, Lim CW: Symplectic Elasticity. World Scientific Publishing, Singapore (2009).zbMATHCrossRefGoogle Scholar
  20. [20]
    Borrelli A, Horgan CO, Patria MC: Saint-Venant principle for anti-plane shear deformations of linear piezoelectric materials. SIAM Journal on Applied Mathematics 62, 2027–2044 (2003).MathSciNetCrossRefGoogle Scholar
  21. [21]
    Wang JS, Qin QH: Symplectic model for piezoelectric wedges and its application in analysis of electroelastic singularities. Philosophical Magazine 87(2), 225–251 (2007).CrossRefGoogle Scholar

Copyright information

© Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Qing-Hua Qin
    • 1
  1. 1.Research School of EngineeringAustralian National UniversityCanberraAustralia

Personalised recommendations