Fibrous Piezoelectric Composites

  • Qing-Hua Qin


In the previous two chapters we presented some fundamental ideas about piezoelectric composites and their mathematical treatment, including the linear theory of piezoelectricity and the corresponding solution techniques. We now try to generalize these ideas to a range of fibrous composite problems such as piezoelectric fiber push-out and pull-out, stress and electric field transfer between fiber and matrix, debonding criteria for the fiber push-out test, effective material properties of composites, and solutions of piezoelectric composites with an elliptic fiber. All these topics are analyzed within the framework of linear theory of piezoelectric materials.


Energy Release Rate Interfacial Shear Stress Piezoelectric Composite Debonded Region Total Energy Release Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    He LH, Lim CW: Electromechanical responses of piezoelectric fiber composites with sliding interface under anti-plane deformations. Composites Part B: Engineering 34(4), 373–381 (2003).CrossRefGoogle Scholar
  2. [2]
    Smart Material Corp.
  3. [3]
    Hagood NW, Kindel R, Ghandi K, Gaudenzi P: Improving transverse actuation of piezoceramics using interdigitated surface electrodes. Proc. SPIE 1917, 341–352 (1993).CrossRefGoogle Scholar
  4. [4]
    Hagood N, Bent A: Composites for structural control. US Patent, 6048622 (2000).Google Scholar
  5. [5]
    Bent AA, Hagood NW: Improved performance in piezoelectric fibre composites using interdigitated electrodes. Proc. SPIE 2441,196–212 (1995).CrossRefGoogle Scholar
  6. [6]
    Wilkie WK, Bryant GR, High JW, Fox RL, Hallbaum RF, Jalink A Jr, Little BD, Mirick P H: Low-cost piezocomposite actuator for structural control applications. Proc. SPIE 3991, 323 (2000).CrossRefGoogle Scholar
  7. [7]
    Cannon BJ, Brei D: Feasibility study of microfabrication by coextrusion (MFCX) hollow fibers for active composites. Journal of Intelligent Material Systems and Structures 11(9), 659–670 (2000).Google Scholar
  8. [8]
    Liu HY, Qin QH, Mai YW: Theoretical model of piezoelectric fibre pull-out. International Journal of Solids and Structures 40(20), 5511–5519 (2003).zbMATHCrossRefGoogle Scholar
  9. [9]
    Gao YC, Mai YW, Cotterell B: Fracture of fiber-reinforced materials. Zeitschrift Fur Angewandte Mathematik Und Physik 39(4), 550–572 (1988).zbMATHCrossRefGoogle Scholar
  10. [10]
    Zhou LM, Mai YW: On the single-fiber pullout and pushout problem—effect of fiber anisotropy. Zeitschrift Fur Angewandte Mathematik Und Physik 44(4), 769–775 (1993).zbMATHCrossRefGoogle Scholar
  11. [11]
    Zhou LM, Kim JK, Mai YW: On the single fiber pull-out problem—effect of loading method. Composites Science and Technology 45(2), 153–160 (1992).CrossRefGoogle Scholar
  12. [12]
    Zhou LM, Kim JK, Mai YW: Interfacial debonding and fiber pull-out stresses. 2. A new model based on the fracture-mechanics approach. Journal of Materials Science 27(12), 3155–3166 (1992).CrossRefGoogle Scholar
  13. [13]
    Zhou LM, Mai YW, Ye L: Analyses of fiber push-out test based on the fracture-mechanics approach. Composites Engineering 5(10-11), 1199–1219 (1995).CrossRefGoogle Scholar
  14. [14]
    Gu B, Liu HY, Mai YW: A theoretical model on piezoelectric fibre pullout with electric input. Engineering Fracture Mechanics 73(14), 2053–2066 (2006).CrossRefGoogle Scholar
  15. [15]
    Qin QH, Wang JS, Kang YL: A theoretical model for electroelastic analysis in piezoelectric fibre push-out test. Archive of Applied Mechanics 75(8–9), 527–540 (2006).zbMATHCrossRefGoogle Scholar
  16. [16]
    Wang JS, Qin QH: Debonding criterion for the piezoelectric fibre push-out test. Philosophical Magazine Letters 86(2), 1 3-136 (2006).Google Scholar
  17. [17]
    Wang JS, Qin QH, Kang YL: Stress and electric field transfer of piezoelectric fibre push-out under electric and mechanical loading. In: Ren WX, Gary Ong KC, Tan JSY (eds.) 9th International Conference on Inspection, Appraisal, Repairs & Maintenance of Structures, Fuzhou, China, 20–21 October, 2005, pp. 435–442. CI-Premier PTY LTD (2005).Google Scholar
  18. [18]
    Hill R: Elastic properties of reinforced solids: Some theoretical principles. Journal of the Mechanics and Physics of Solids 11(5), 357–372 (1963).zbMATHCrossRefGoogle Scholar
  19. [19]
    Hill R: Theory of mechanical properties of fibre-strengthened materials.1. Elastic behaviour. Journal of the Mechanics and Physics of Solids 12(4), 199–212 (1964).MathSciNetCrossRefGoogle Scholar
  20. [20]
    Grekov AA, Kramarov SO, Kuprienko AA: Effective properties of a transversely isotropic piezocomposite with cylindrical inclusions. Ferroelectrics 99, 115–126 (1989).CrossRefGoogle Scholar
  21. [21]
    Dunn ML, Taya M: Micromechanics predictions of the effective electroelastic moduli of piezoelectric composites. International Journal of Solids and Structures 30(2), 161–175 (1993).zbMATHCrossRefGoogle Scholar
  22. [22]
    Schulgasser K: Relationships between the effective properties of transversely isotropic piezoelectric composites. Journal of the Mechanics and Physics of Solids 40(2), 473–479 (1992).MathSciNetzbMATHCrossRefGoogle Scholar
  23. [23]
    Benveniste Y, Dvorak GJ: Uniform-fields and universal relations in piezoelectric composites. Journal of the Mechanics and Physics of Solids 40(6), 1295–1312 (1992).MathSciNetzbMATHCrossRefGoogle Scholar
  24. [24]
    Benveniste Y: Exact results in the micromechanics of fibrous piezoelectric composites exhibiting pyroelectricity. Proceedings of the Royal Society of London Series A: Mathematical Physical and Engineering Sciences 441(1911), 59–81 (1993).CrossRefGoogle Scholar
  25. [25]
    Benveniste Y: Magnetoelectric effect in fibrous composites with piezoelectric and piezomagnetic phases. Physical Review B 51(22), 16424–16427 (1995).CrossRefGoogle Scholar
  26. [26]
    Chen TY: Piezoelectric properties of multiphase fibrous composites asome theoretical results. Journal of the Mechanics and Physics of Solids 41(11), 1781–1794 (1993).MathSciNetzbMATHCrossRefGoogle Scholar
  27. [27]
    Mallik N, Ray MC: Effective coefficients of piezoelectric fiber-reinforced composites. AIAA Journal 41(4), 704–710 (2003).CrossRefGoogle Scholar
  28. [28]
    Huang JH, Kuo WS: The analysis of piezoelectric/piezomagnetic composite materials containing ellipsoidal inclusions. Journal of Applied Physics 81(3), 1378–1386 (1997).CrossRefGoogle Scholar
  29. [29]
    Huang JH: Analytical predictions for the magnetoelectric coupling in piezomagnetic materials reinforced by piezoelectric ellipsoidal inclusions. Physical Review B 58(1), 12–15 (1998).CrossRefGoogle Scholar
  30. [30]
    Jiang CP, Tong ZH, Cheung YK: A generalized self-consistent method for piezoelectric fiber reinforced composites under antiplane shear. Mechanics of Materials 33(5), 295–308 (2001).CrossRefGoogle Scholar
  31. [31]
    Jiang CP, Tong ZH, Cheung YK: A generalized self-consistent method accounting for fiber section shape. International Journal of Solids and Structures 40(10), 2589–2609 (2003).zbMATHCrossRefGoogle Scholar
  32. [32]
    Tong ZH, Lo SH, Jiang CP, Cheung YK: An exact solution for the three-phase thermo-electro-magneto-elastic cylinder model and its application to piezoelectric-magnetic fiber composites. International Journal of Solids and Structures 45(20), 5205–5219 (2008).zbMATHCrossRefGoogle Scholar
  33. [33]
    Kumar A, Chakraborty D: Effective properties of thermo-electro-mechanically coupled piezoelectric fiber reinforced composites. Materials & Design 30(4), 1216–1222 (2009).CrossRefGoogle Scholar
  34. [34]
    Benveniste Y: On the micromechanics of fibrous piezoelectric composites. Mechanics of Materials 18(3), 183–193 (1994).MathSciNetCrossRefGoogle Scholar
  35. [35]
    Qin QH: Thermoelectroelastic solution for elliptic inclusions and application to crack-inclusion problems. Applied Mathematical Modelling 25(1), 1–23 (2000).zbMATHCrossRefGoogle Scholar
  36. [36]
    Qin QH: Fracture Mechanics of Piezoelectric Materials. WIT Press, Southampton (2001).Google Scholar
  37. [37] Zhang X, Liu HY, Mai YW, Diao XX: On steady-state fibre pull-out. I. The stress field. Composites Science and Technology 59(15), 2179–2189 (1999).Google Scholar
  38. [38]
    Tiersten HF: Linear Piezoelectric Plate Vibrations. Plenum Press, New York (1969).Google Scholar
  39. [39]
    Zhou LM: A study on the fracture mechanics of interfaces in fibre-matrix composites. PhD Thesis, University of Sydney (1994).Google Scholar
  40. [40]
    Steinhausen R, Hauke T, Seifert W, Beige H, Watzka W, Seifert S, Sporn D, Starke S, Schonecker A: Finescaled piezoelectric 1–3 composites: Properties and modeling. Journal of the European Ceramic Society 19(6–7), 1289–1293 (1999).CrossRefGoogle Scholar
  41. [41]
    Chan HLW, Li K, Choy CL: Piezoelectric ceramic fibre/epoxy 1–3 composites for high-frequency ultrasonic transducer applications. Materials Science and Engineering B: Solid State Materials for Advanced Technology 99(1–3), 29–35 (2003).CrossRefGoogle Scholar
  42. [42]
    Nelson LJ: Smart piezoelectric fibre composites. Materials Science and Technology 18(11), 1245–1256(2002).CrossRefGoogle Scholar
  43. [43]
    Honda K, Kagawa Y: Debonding criterion in the pushout process of fiber-reinforced ceramics. Acta Materialia 44(8), 3267–3277 (1996).CrossRefGoogle Scholar
  44. [44]
    Park SB, Sun CT: Effect of electric-field on fracture of piezoelectric ceramics. International Journal of Fracture 70(3), 203–216 (1995).CrossRefGoogle Scholar
  45. [45]
    Hashin Z: Analysis of properties of fiber composites with anisotropic constituents. Journal of Applied Mechanics-Transactions of the ASME 46(3), 543–550 (1979).zbMATHCrossRefGoogle Scholar
  46. [46]
    Ting TCT: Green’s functions for an anisotropic elliptic inclusion under generalized plane strain deformations. Quarterly Journal of Mechanics and Applied Mathematics 49,1–18 (1996).MathSciNetzbMATHCrossRefGoogle Scholar
  47. [47]
    Hwu C, Yen WJ: On the anisotropic elastic inclusions in plane elastostatics. Journal of Applied Mechanics-Transactions of the ASME 60(3), 626–632 (1993).MathSciNetzbMATHCrossRefGoogle Scholar
  48. [48]
    Stagni L: On the elastic field perturbation by inhomogeneities in plane elasticity. Zeitschrift Fur Angewandte Mathematik Und Physik 33(3), 315–325 (1982).zbMATHCrossRefGoogle Scholar

Copyright information

© Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Qing-Hua Qin
    • 1
  1. 1.Research School of EngineeringAustralian National UniversityCanberraAustralia

Personalised recommendations