Advertisement

Introduction to Piezoelectricity

  • Qing-Hua Qin

Abstract

This chapter provides a basic introduction to piezoelectricity. It begins with a discussion of background and applications of piezoelectric materials. We then present the linear theory of piezoelectricity, functionally graded piezoelectric materials(FGPM), and fundamental knowledge of fibrous piezoelectric composites(FPC).

Keywords

Piezoelectric Material Barium Titanate Smoke Alarm Interdigitated Electrode Electric Boundary Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Curie J, Curie P: Development par compression de l’eletricite polaire dans les cristaux hemiedres a faces inclines. Bulletin no. 4 de la Societe Mineralogique de France 3, 90(1880) and Comptes Rendus Acad. Sci. Paris 91,294 (1880).Google Scholar
  2. [2]
    Lippmann HG: Sur le principe de la conversation de l’eletricite ou second principe de la theorie des phenomenes electriques. Comptes Rendus Acad. Sci. Paris 92, 1049 (1881).Google Scholar
  3. [3]
    Curie J, Curie P: Contractions et dilations productes par des tensions electriques dans les cristaux hemiedres a faces inclines. Comptes Rendus Acad. Sci. Paris 93, 1137 (1884).Google Scholar
  4. [4]
    Voigt W: General theory of the piezo and pyroelectric properties of crystals. Abh. Gott. 36,1 (1890).Google Scholar
  5. [5]
    Cady WG: Piezoelectricity, Vol. 1 & 2. Dover Publishers, New York (1964).Google Scholar
  6. [6]
    Tiersten HF: Linear Piezoelectric Plate Vibrations. Plenum Press, New York (1969).Google Scholar
  7. [7]
    Parton VZ, Kudryavtsev BA: Electromagnetoelasticity, Piezoelectrics and Electrically Conductive Solids. Gordon and Breach Science Publishers, New York (1988).Google Scholar
  8. [8]
    Ikeda T: Fundamentals of Piezoelectricity. Oxford Science Publications, New York (1990).Google Scholar
  9. [9]
    Rogacheva NN: The Theory of Piezoelectric Shells and Plates. CRC Press, Boca Raton (1994).Google Scholar
  10. [10]
    Qin QH: Fracture Mechanics of Piezoelectric Materials. WIT Press, Southampton (2001).Google Scholar
  11. [11]
    Qin QH: Green’s Function And Boundary Elements in Multifield Materials. Elsevier, Oxford (2007).Google Scholar
  12. [12]
    Qin QH, Yang QS: Macro-Micro Theory on Multifield Behaviour of Heterogeneous Materials. Higher Education Press & Springer, Beijing (2008).Google Scholar
  13. [13]
    Kistler: The Piezoelectric Effect, Theory, Design and Usage. http://www. designinfo.com/kistler/ref/tech_theory_text.htm (2010). Accessed 15 March 2011.Google Scholar
  14. [14]
    Qin QH: Variational formulations for TFEM of piezoelectricity. International Journal of Solids and Structures 40(23), 6335–6346 (2003).zbMATHCrossRefGoogle Scholar
  15. [15]
    Parton VZ: Fracture mechanics of piezoelectric materials. Acta Astronautica 3, 671–683 (1976).zbMATHCrossRefGoogle Scholar
  16. [16]
    Hao TH, Shen ZY: A new electric boundary condition of electric fracture mechanics and its applications. Engineering Fracture Mechanics 47(6), 793–802 (1994).CrossRefGoogle Scholar
  17. [17]
    Suo Z, Kuo CM, Barnett DM, Willis JR: Fracture mechanics for piezoelectric ceramics. Journal of the Mechanics and Physics of Solids 40(4), 739–765 (1992).MathSciNetzbMATHCrossRefGoogle Scholar
  18. [18]
    Deeg WF: The analysis of dislocation, crack, and inclusion problems in piezoelectric solids. PhD Thesis, Stanford University (1980).Google Scholar
  19. [19]
    Sutradhar A, Paulino GH: The simple boundary element method for transient heat conduction in functionally graded materials. Computer Methods in Applied Mechanics and Engineering 193(42–44), 4511–4539 (2004).zbMATHCrossRefGoogle Scholar
  20. [20]
    Sosa H: On the fracture-mechanics of piezoelectric solids. International Journal of Solids and Structures 29(21), 2613–2622 (1992).zbMATHCrossRefGoogle Scholar
  21. [21]
    Zhong Z, Yu T: Electroelastic analysis of functionally graded piezoelectric material beams. Journal of Intelligent Material Systems and Structures 19(6), 707–713 (2008).CrossRefGoogle Scholar
  22. [22]
    Nelson LJ: Smart piezoelectric fibre composites. Materials Science and Technology 18(11), 1245–1256 (2002).CrossRefGoogle Scholar
  23. [23]
    Hagood N, Bent A: Composites for structural control. US Patent, 6048622 (2000).Google Scholar
  24. [24]
    Newnham RE, Skinner DP, Cross LE: Connectivity and piezoelectric-pyroelectric composites. Materials Research Bulletin 13(5), 525–536 (1978).CrossRefGoogle Scholar
  25. [25]
    Smith WA: The role of piezoelectric in ultrasonic transducers. IEEE 1989 Ultrasonic Symposium, 755–766 (1989).Google Scholar
  26. [26]
    Safari A, Janas V, Jadidian B: Incorporation of piezoelectric Pb(Zr,Ti)O3 fibre into ceramic/polymer composites. Proc. SPIE 2721,240–250 (1996).CrossRefGoogle Scholar
  27. [27]
    Brei D, Cannon BJ: Piezoceramic hollow fiber active composites. Composites Science and Technology 64(2), 245–261 (2004).CrossRefGoogle Scholar
  28. [28]
    Chan HLW, Unsworth J: Simple model for piezoelectric ceramic polymer 1–3 composites used in ultrasonic transducer applications. IEEE Transactions on Ultrasonic, Ferroelectrics & Frequency Control 36, 434–441 (1989).CrossRefGoogle Scholar
  29. [29]
    Chan HLW, Guy IL: Piezoelectric ceramic/polymer composites for high frequency applications. Key Engineering Materials 92–93, 275–300 (1994).CrossRefGoogle Scholar
  30. [30]
    Bent AA, Hagood NW: Piezoelectric fiber composites with interdigitated electrodes. Journal of Intelligent Material Systems and Structures 8(11), 903–919 (1997).CrossRefGoogle Scholar
  31. [31]
    Bent AA, Hagood NW: Improved performance in piezoelectric fibre composites using interdigitated electrodes. Proc. SPIE 2441,196–212 (1995).CrossRefGoogle Scholar
  32. [32]
    Hagood NW, Kindel R, Ghandi K, Gaudenzi P: Improving transverse actuation of piezoceramics using interdigitated surface electrodes. Proc. SPIE 1917,341–352 (1993).CrossRefGoogle Scholar
  33. [33]
    Cannon BJ, Brei D: Feasibility study of microfabrication by coextrusion (MFCX) hollow fibers for active composites. Journal of Intelligent Material Systems and Structures 11(9), 659–670 (2000).Google Scholar
  34. [34]
    Fernandez JF, Dogan A, Zhang QM, Tressler JF, Newnham RE: Hollow piezoelectric composites. Sensors and Actuators A: Physical 51(2–3), 183–192 (1995).CrossRefGoogle Scholar
  35. [35]
    Williams RB, Park G, Inman DJ, Wilkie WK: An overview of composite actuators withpiezoceramic fibers. Proc. SPIE 4753,421–427 (2002).CrossRefGoogle Scholar
  36. [36]
    Zhang QM, Wang H, Cross LE: Piezoelectric tubes and tubular composites for actuator and sensor applications. Journal of Materials Science 28(14), 3962–3968 (1993).CrossRefGoogle Scholar

Copyright information

© Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Qing-Hua Qin
    • 1
  1. 1.Research School of EngineeringAustralian National UniversityCanberraAustralia

Personalised recommendations