Advertisement

Improving the Semantics of a Conceptual Schema of the Human Genome by Incorporating the Modeling of SNPs

  • Óscar Pastor
  • Matthijs van der Kroon
  • Ana M. Levin
  • Matilde Celma
  • Juan Carlos Casamayor
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 272)

Abstract

In genetic research, the concept known as SNP, or single nucleotide polymorphism, plays an important role in detection of genes associated with complex ailments and detection of hereditary susceptibility of an individual to a specific trait. Discussing the issue, as it surfaced in the development of a conceptual schema for the human genome, it became clear a high degree of conceptual ambiguity surrounds the term. Solving this ambiguity has lead to the main research question: What makes a genetic variation, classified as a SNP different from genetic variations, not classified as SNP?. For optimal biological research to take place, an unambiguous conceptualization is required. Our main contribution is to show how conceptual modeling techniques applied to human genome concepts can help to disambiguate and correctly represent the relevant concepts in a conceptual schema, thereby achieving a deeper and more adequate understanding of the domain.

Keywords

Single Nucleotide Polymorphism Human Genome Conceptual Schema Main Research Question Individual Genome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Scherren, K., Jost, J.: Gene and genon concept: coding versus regulation. Theory in Biosciences 126(2-3), 65–113 (2007)CrossRefGoogle Scholar
  2. 2.
    Gerstein, M.B., Bruce, C., Rozowosky, J., Zheng, D., Du, J., Korbel, J., Emanuelson, O., Zhang, Z., Weissman, S., Snyder, M.: What is a gene, post-ENCODE? Genome Research 17(6), 669–681 (2007)CrossRefGoogle Scholar
  3. 3.
    Pearson, H.: Genetics: What is a gene? Nature 441(7092), 398–402 (2006)CrossRefGoogle Scholar
  4. 4.
    Risch, N., Merikangas, K.: The future of genetic studies of complex human diseases. Science 273, 1516–1517 (1996)CrossRefGoogle Scholar
  5. 5.
    Li, W.-H., Wu, C.-I., Luo, C.-C.: Nonrandomness of point mutation as reflected in nucleotide substitutions in pseudogenes and its evolutionary implications. Journal of Molecular Evolution 21, 58–71 (1984)CrossRefGoogle Scholar
  6. 6.
    Zhao, Z., Boerwinkle, E.: Neighboring-nucleotide effects on single nucleotide polymorphisms: a study of 2.6 million polymorphisms across the human genome. Genome Research 12, 1679–1686 (2002)CrossRefGoogle Scholar
  7. 7.
    Kaessmann, H., Heißig, F., von Haeseler, A., Pääbo, S.: DNA sequence variation in a non-coding region of low recombination on the human X chromosome. Natural Genetics 22, 78–81 (1999)CrossRefGoogle Scholar
  8. 8.
    Zhao, Z., Li, J., Fu, Y.-X., et al.: Worldwide DNA sequence variation in a 10-kilobase noncoding region on human chromosome 22. Proceedings of the National Academy of Sciences USA 97, 11354–11358 (2000)CrossRefGoogle Scholar
  9. 9.
    Jorde, L.B., Watkins, W.S., Bamshad, M.J.: Population genomics: a bridge from evolutionary history to genetic medicine. Human Molecular Genetics 10, 2199–2207 (2001)CrossRefGoogle Scholar
  10. 10.
    Schwarz, D.F., Hädicke, O., Erdmann, J., Ziegler, A., Bayer, D., Möller, S.: SNPtoGO: characterizing SNPs by enriched GO terms. Bioinformatics 24(1), 146 (2008)CrossRefGoogle Scholar
  11. 11.
    Selic, B.: The Pragmatics of Model-Driven Development. IEEE Software 20(5), 19–26 (2003)CrossRefGoogle Scholar
  12. 12.
    Pastor, O.: Conceptual Modeling Meets the Human Genome. In: Li, Q., Spaccapietra, S., Yu, E., Olivé, A. (eds.) ER 2008. LNCS, vol. 5231, pp. 1–11. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Pastor, O., Levin, A.M., Celma, M., Casamayor, J.C., Eraso Schattka, L.E., Villanueva, M.J., Perez-Alonso, M.: Enforcing Conceptual Modeling to Improve the Understanding of the Human Genome. In: Procs. of the IVth Int. Conference on Research Challenges in Information Science, RCIS 2010, Nice, France. IEEE Press (2010) ISBN #978-1-4244-4840-1Google Scholar
  14. 14.
    Venter, C., Adams, M.D., Myers, E.W., et al.: The Sequence of the Human Genome. Science 291(5507), 1304–1351 (2000)CrossRefGoogle Scholar
  15. 15.
    Pastor, O., Molina, J.C.: Model-driven architecture in practice: a software production environment based on conceptual modeling. Springer, Heidelberg (2007)Google Scholar
  16. 16.
    Alberts, B., Bray, D., Hopkin, K., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P.: Essential Cell Biology. Zayatz, E., Lawrence, E. (eds.), 2nd edn., Garland Science USA (2003)Google Scholar
  17. 17.
    Zhao, Z., Fu, Y.-X., Hewett-Emmett, D., Boerwinkle, E.: Investigating single nucleotide polymorphism (SNP) density in the human genome and its implications for molecular evolution. Gene 312, 207–213 (2003)CrossRefGoogle Scholar
  18. 18.
    Vignal, A., Milan, D., SanCristobal, M., Eggen, A.: A review on SNP and other types of molecular markers and their use in animal genetics. Genetics, Selection, Evolution 34(3), 275 (2002)CrossRefGoogle Scholar
  19. 19.
  20. 20.
    National Center for Biotechnology Information, http://www.ncbi.nlm.nih.gov/
  21. 21.
    Yue, P., Moult, J.: Identification and analysis of deleterious human SNPs. Journal of Molecular Biology 356(5), 1263–1274 (2006)CrossRefGoogle Scholar
  22. 22.
    Shastry, B.S.: SNPs: Impact on gene function and phenotype. Methods in Molecular Biology 578, 3–22 (2009)CrossRefGoogle Scholar
  23. 23.
    Devlin, B., Risch, N.: A comparison of Linkage Disequilibrium measures for fine-scale mapping. Genomics 29(2), 311–322 (1995)CrossRefGoogle Scholar
  24. 24.
    HUGO Gene Nomenclature Committee, http://www.genenames.org/
  25. 25.
    Maglott, D., Ostell, J., Pruitt, K.D., Tatusova, T.: Entrez Gene: gene-centered information at NCBI. Nucleic Acids Research 35, 26–32 (2006)CrossRefGoogle Scholar
  26. 26.
    Stenson, P.D., Mort, M., Ball, E.V., Howells, K., Phillips, A.D., Thomas, N.S.T., Cooper, D.N.: The Human Gene Mutation Database: 2008 update. Genome Medicine 1, 13 (2009)CrossRefGoogle Scholar
  27. 27.
    Mooney, S.D., Altman, R.B.: MutDB: annotating human variation with functionally relevant data. Bioinformatics 19, 1858–1860 (2003)CrossRefGoogle Scholar
  28. 28.
    Szabo, C., Masiello, A., Ryan, J.F., Brody, L.C.: The Breast Cancer Information Core: Database design, structure, and scope. Human Mutation 16, 123–131 (2000)CrossRefGoogle Scholar
  29. 29.
    Povey, S., Lovering, R., Bruford, E., Wright, M., Lush, M., Wain, H.: The HUGO Gene Nomenclature Committee (HGNC). Human Genetics 109, 678–680 (2001)CrossRefGoogle Scholar
  30. 30.
    The HapMap project, http://www.hapmap.org
  31. 31.
    International HapMap Consortium. A second generation human haplotype map of over 3.1 million SNPs. Nature 449, 851–862 (2007)Google Scholar
  32. 32.
    Gibbs, R.A., Belmont, J.W., Hardenbol, P., Willis, T.D., Yu, F., et al.: The International HapMap project. Nature 426, 789–796 (2003)CrossRefGoogle Scholar
  33. 33.
    Stoesser, G., Tuli, M.A., Lopez, R., Sterk, P.: The EMBL Nucleotide Sequence Database. Nucleic Acids Research 27, 18–24 (1999)CrossRefGoogle Scholar
  34. 34.
    Okayama, T., Tamura, T., Gojobori, T., Tateno, Y., Ikeo, K., Miyazaki, S., Fukami-Kobayashi, K., Sugawara, H.: Formal design and implementation of an improved DDBJ DNA database with a new schema and object-oriented library. Bioinformatics 14(6), 472 (1998)CrossRefGoogle Scholar
  35. 35.
    Chen, I.M.A., Markowitz, V.: Modeling scientific experiments with an object data model. In: Proceedings of the SSDBM, pp. 391–400. IEEE Press (1995)Google Scholar
  36. 36.
    Medigue, C., Rechenmann, F., Danchin, A., Viari, A.: Imagene, an integrated computer environment for sequence annotation and analysis. Bioinformatics 15(1), 2 (1999)CrossRefGoogle Scholar
  37. 37.
    Paton, N.W., Khan, S.A., Hayes, A., Moussouni, F., Brass, A., Eilbeck, K., Goble, C.A., Hubbard, S.J., Oliver, S.G.: Conceptual modeling of genomic information. Bioinformatics 16(6), 548–557 (2000)CrossRefGoogle Scholar
  38. 38.
    Pastor, M.A., Burriel, V., Pastor, O.: Conceptual Modeling of Human Genome Mutations: A Dichotomy Between What we Have and What we Should Have. BIOSTEC Bioinformatics, 160–166 (2010) ISBN: 978-989-674-019-1 Google Scholar
  39. 39.
    Ashburner, M., Ball, C.A., Blake, J.A.: Gene Ontology: tool for the unification of biology. Nature Genetics 25(1), 25–30 (2000)CrossRefGoogle Scholar
  40. 40.
    Schwarz, D.F., Hdicke, O., Erdmann, J., Ziegler, A., Bayer, D., Mller, S.: SNPtoGO: characterizing SNPs by enriched GO terms. Bioinformatics 24(1), 146 (2008)CrossRefGoogle Scholar
  41. 41.
    Coulet, A., Smaïl-Tabbone, M., Benlian, P., Napoli, A., Devignes, M.-D.: SNP-Converter: An Ontology-Based Solution to Reconcile Heterogeneous SNP Descriptions for Pharmacogenomic Studies. In: Leser, U., Naumann, F., Eckman, B. (eds.) DILS 2006. LNCS (LNBI), vol. 4075, pp. 82–93. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  42. 42.
    Guarino, N.: Formal Ontology in Information Systems. In: Bennett, B., Fellbaum, C. (eds.) Proceedings of the Fourth International Conference (FOIS 2006), vol. 150. IOS Press (1998/2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Óscar Pastor
    • 1
  • Matthijs van der Kroon
    • 1
  • Ana M. Levin
    • 1
  • Matilde Celma
    • 1
  • Juan Carlos Casamayor
    • 1
  1. 1.Centro de Investigación en Métodos de Producción de Software -PROSUniversidad Politécnica de ValenciaValenciaSpain

Personalised recommendations