An Information Theoretical Approach to Crowd Simulation

  • Cagatay Turkay
  • Emre Koc
  • Selim Balcisoy
Part of the Communications in Computer and Information Science book series (CCIS, volume 242)


In this study, an information theory based framework to automatically construct analytical maps of crowd’s locomotion, called behavior maps, is presented. For these behavior maps, two distinct use cases in crowd simulation domain are introduced; i) automatic camera control ii) behavioral modeling.

The first use case for behavior maps is an automatic camera control technique to display interest points which represent either characteristic behavior of the crowd or novel events occurring in the scene.

As the second use case, a behavioral model to control agents’ behavior with agent-crowd interaction formulations is introduced. This model can be integrated into a crowd simulator to enhance its behavioral complexity and realism.


Virtual Environment Interest Point Camera Control Crowd Behavior Camera Placement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arbel, T., Ferrie, F.P.: Viewpoint selection by navigation through entropy maps. In: IEEE International Conference on Computer Vision, vol. 1, p. 248 (1999)Google Scholar
  2. Bell, P.A.: Environmental Psychology. Wadsworth Pub. Co. (2001)Google Scholar
  3. Berclaz, J., Fleuret, F., Fua, P.: Multi-camera Tracking and Atypical Motion Detection with Behavioral Maps. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 112–125. Springer, Heidelberg (2008), doi:, ISBN 978-3-540-88689-1CrossRefGoogle Scholar
  4. Blinn, J.: Where am i? what am i looking at? IEEE Computer Graphics and Applications 8(4), 76–81 (1988)CrossRefGoogle Scholar
  5. Christie, M., Olivier, P.: Camera control in computer graphics. In: Eurographics 2006 State of The Art Report (2006)Google Scholar
  6. Cover, T.M., Thomas, J.A.: Elements of information theory. Wiley-Interscience, New York (1991)zbMATHCrossRefGoogle Scholar
  7. Dornhege, C., Kleiner, A.: Behavior maps for online planning of obstacle negotiation and climbing on rough terrain. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2007, pp. 3005–3011 (2007)Google Scholar
  8. Feixas, M., del Acebo, E., Bekaert, P., Sbert, M.: An information theory framework for the analysis of scene complexity. Computer Graphics Forum 18, 95–106 (1999)CrossRefGoogle Scholar
  9. Gayle, R., Sud, A., Andersen, E., Guy, S.J., Lin, M.C., Manocha, D.: Interactive Navigation of Heterogeneous Agents Using Adaptive Roadmaps. IEEE Transactions on Visualization and Computer Graphics 15(1), 34–48 (2009)CrossRefGoogle Scholar
  10. Gleicher, M., Witkin, A.: Through-the-lens camera control. In: Computer Graphics (Proc. SIGGRAPH 1992), vol. 26 (1992); Proc. Siggraph 1992Google Scholar
  11. He, L.-W., Cohen, M.F., Salesin, D.H.: The virtual cinematographer: a paradigm for automatic real-time camera control and directing. In: SIGGRAPH 1996: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, pp. 217–224. ACM, New York (1996)CrossRefGoogle Scholar
  12. Hengchin, Y., Sean, C., Sachin, P., van den Jur, B., Dinesh, M., Ming, L.: Composite agents. In: Symposium on Computer Animation - SCA 2008 (2008)Google Scholar
  13. Hu, X.: Context-Dependent Adaptability in Crowd Behavior Simulation. In: 2006 IEEE International Conference on Information Reuse and Integration, pp. 214–219 (2006)Google Scholar
  14. Itti, L., Baldi, P.: A principled approach to detecting surprising events in video. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 631–637. IEEE Computer Society (2005)Google Scholar
  15. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20(11), 1254–1259 (1998)CrossRefGoogle Scholar
  16. Ji, G., Shen, H.-W.: Dynamic view selection for time-varying volumes. IEEE Transactions on Visualization and Computer Graphics 12(5), 1109–1116 (2006)CrossRefGoogle Scholar
  17. Kamada, T., Kawai, S.: A simple method for computing general position in displaying three-dimensional objects. Comput. Vision Graph. Image Process. 41(1), 43–56 (1988)CrossRefGoogle Scholar
  18. Kasap, Z., Magnenat-Thalmann, N.: Intelligent Virtual Humans with Autonomy and Personality: State-of-the-Art. In: New Adv. Virt. Hum.: Arti. Intel. SCI, pp. 43–84. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. Kullback, S.: Information Theory and Statistics (Dover Books on Mathematics). Dover Publications (July 1997) ISBN 0486696847Google Scholar
  20. Kwon, J.-Y., Lee, I.-K.: Determination of camera parameters for character motions using motion area. The Visual Computer 24(7-9), 475–483 (2008) ISSN 0178-2789CrossRefGoogle Scholar
  21. Lee, C.H., Varshney, A., Jacobs, D.W.: Mesh saliency. In: SIGGRAPH 2005: ACM SIGGRAPH 2005 Papers, pp. 659–666. ACM, New York (2005)CrossRefGoogle Scholar
  22. Luo, L., Zhou, S., Cai, W., Low, M.Y.H., Tian, F., Wang, Y., Xiao, X., Chen, D.: Agent-based human behavior modeling for crowd simulation. Comput. Animat. Virtual Worlds 19(3-4), 271–281 (2008)CrossRefGoogle Scholar
  23. Musse, S.R., Thalmann, D.: Hierarchical model for real time simulation of virtual human crowds. IEEE Transactions on Visualization and Computer Graphics 7, 152–164 (2001)CrossRefGoogle Scholar
  24. Ped-Net (May 2009),
  25. Pelechano, N., OBrien, K., Silverman, B., Badler, N.: Crowd simulation incorporating agent psychological models, roles and communication. In: First International Workshop on Crowd Simulation (2005)Google Scholar
  26. Pelechano, N., Allbeck, J.M., Badler, N.I.: Controlling individual agents in high-density crowd simulation. In: Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 99–108. Eurographics Association (2007) ISBN 978-1-59593-624-4Google Scholar
  27. Reynolds, C.: Opensteer, steering behaviors for autonomous characters (2004), (last visited: November 1, 2008)
  28. Reynolds, C.W.: Flocks, herds and schools: A distributed behavioral model. In: Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques, pp. 25–34 (1987)Google Scholar
  29. Reynolds, C.W.: Steering behaviors for autonomous characters. In: Game Developers Conference (1999)Google Scholar
  30. Rymill, S.J., Dodgson, N.A.: A Psychologically-Based Simulation of Human Behaviour. In: Theory and Practice of Computer Graphics, pp. 35–42 (2005)Google Scholar
  31. Schmid, C., Mohr, R., Bauckhage, C.: Evaluation of interest point detectors. Int. J. Comput. Vision 37(2), 151–172 (2000)zbMATHCrossRefGoogle Scholar
  32. Shannon, C.E.: A mathematical theory of communication. Bell Systems Technical Journal 27, 623–656 (1948)MathSciNetGoogle Scholar
  33. Shao, W., Terzopoulos, D.: Autonomous pedestrians. Graphical Models 69(5-6), 246–274 (2007)CrossRefGoogle Scholar
  34. Shoda, Y.: Computational modeling of personality as a dynamical system. In: Handbook of Research Methods in Personality Psychology, pp. 633–652 (2007)Google Scholar
  35. Shoemake, K.: Animating rotation with quaternion curves. SIGGRAPH Comput. Graph. 19(3), 245–254 (1985)CrossRefGoogle Scholar
  36. Singh, S., Markou, M.: An approach to novelty detection applied to the classification of image regions. IEEE Transactions on Knowledge and Data Engineering 16(4), 396–407 (2004)CrossRefGoogle Scholar
  37. Sommer, R., Sommer, B.: A Practical Guide To Behavioral Research: Tools and Technique, 5th edn. Oxford University Press (2002)Google Scholar
  38. Stoev, S.L., Straßer, W.: A case study on automatic camera placement and motion for visualizing historical data. In: VIS 2002: Proceedings of the Conference on Visualization 2002. IEEE Computer Society, Washington, DC (2002) ISBN 0-7803-7498-3Google Scholar
  39. Sung, M., Gleicher, M., Chenney, S.: Scalable behaviors for crowd simulation. Computer Graphics Forum 23, 519–528 (2004)CrossRefGoogle Scholar
  40. Thalmann, D., Musse, S.R.: Crowd Simulation. Springer, Heidelberg (2007)Google Scholar
  41. Treuille, A., Cooper, S., Popović, Z.: Continuum crowds. ACM Trans. Graph. 25(3), 1160–1168 (2006) ISSN 0730-0301CrossRefGoogle Scholar
  42. Turkay, C., Koc, E., Balcisoy, S.: An information theoretic approach to camera control for crowded scenes. The Visual Computer 25(5-7), 451–459 (2009a), doi:, ISSN 0178-2789
  43. Turkay, C., Koc, E., Yuksel, K., Balcisoy, S.: Adaptive behavioral modeling for crowd simulations. In: Proceedings of International Conference on Computer Animation and Social Agents (Short Papers), pp. 65–68 (2009b)Google Scholar
  44. van den Berg, J., Lin, M., Manocha, D.: Reciprocal Velocity Obstacles for real-time multi-agent navigation. In: Robotics and Automation, 2008, pp. 1928–1935 (2008)Google Scholar
  45. Vázquez, P.-P., Feixas, M., Sbert, M., Heidrich, W.: Viewpoint selection using viewpoint entropy. In: VMV 2001: Proceedings of the Vision Modeling and Visualization Conference 2001, Aka GmbH, pp. 273–280 (2001)Google Scholar
  46. Wolfe, J.: Visual search. In: Pashler, H.E. (ed.) Attention, ch. 1, pp. 13–69. University College London Press, London (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Cagatay Turkay
    • 1
  • Emre Koc
    • 2
  • Selim Balcisoy
    • 2
  1. 1.University of BergenBergenNorway
  2. 2.Sabanci UniversityIstanbulTurkey

Personalised recommendations