Skip to main content

A Configurable Integrated Circuit for Biomedical Signal Acquisition

  • Conference paper
Biomedical Engineering Systems and Technologies (BIOSTEC 2011)

Abstract

A 10 channel CMOS integrated circuit (IC) for biomedical signal acquisition is presented. Each channel of the IC includes a programmable analog front-end (AFE) and a 20 bit analog-to-digital converter (ADC). An active DC-suppression circuitry allows to tolerate DC-offsets of up to ±1 V for a power supply voltage of 3.3 V. The AFE includes a common-mode rejection ratio (CMRR) calibration circuitry resulting in a CMRR of more than 80 dB. In low-noise mode the AFE achieves an input referred noise of less than 0.11 μV rms for EEG application (0.5-70 Hz) and the power consumption of the IC is less than 30 mW in low-power mode. An experimental USB-Stick for biomedical signal acquisition has been realized using the IC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Martins, R., Selberherr, S., Vaz, F.A.: A CMOS IC for portable EEG acquisition systems. IEEE Trans. Instrum. Meas. 47(5), 1191–1196 (1998)

    Article  Google Scholar 

  2. Ng, K.A., Chan, P.K.: A CMOS analog front-end IC for portable EEG/ECG monitoring. IEEE Trans. Circuits Syst. I, Reg. Papers 52(11), 2335–2346 (2005)

    Article  Google Scholar 

  3. Desel, T., Reichel, T., Rudischhauser, S., Hauer, H.: A CMOS nine channel ECG measurement IC. In: 2nd International Conference ASIC (1996)

    Google Scholar 

  4. Fuchs, B., Vogel, S., Schroeder, D.: Universal application-specific integrated circuit for bioelectric data acquisition. Medical Engineering and Physics 24, 695–701 (2002)

    Article  Google Scholar 

  5. Yazicioglu, R.F., Merken, P., Puers, R., Van Hoof, C.: A 200 μW Eight-Channel EEG Acquisition ASIC for Ambulatory EEG Systems. IEEE J. Solid-State Circuits 43(12), 3025–3038 (2008)

    Article  Google Scholar 

  6. Martin, T., Jovanov, E., Raskovic, D.: Issues in wearable computing for medical monitoring applications: a case study of a wearable ECG monitoring device. In: The Fourth International Symposium on Wearable Computers, pp. 43–49 (2000)

    Google Scholar 

  7. Galjan, W., Naydenova, D., Tomasik, J.M., Schroeder, D., Krautschneider, W.H.: A portable SoC-based ECG-system for 24h x 7d operating time. In: IEEE Biocas 2008, Baltimore, pp. 85–88 (2008)

    Google Scholar 

  8. Scheer, H.J., Sander, T., Trahms, L.: The influence of amplifier, interface and biological noise on signal quality in high-resolution EEG recordings. Physiol. Meas. 27, 109–117 (2006)

    Article  Google Scholar 

  9. Webster, J.G.: Medical instrumentation: application and design, 3rd edn. Wiley & Sons, New York (1998)

    Google Scholar 

  10. Van Helleputte, N., Tomasik, J.M., Galjan, W., Mora-Sanchez, A., Schroeder, D., Krautschneider, W.H., Puers, R.: A flexible system-on-chip (SoC) for biomedical signal acquisition and processing. Sens. Actuators A: Phys. 142(1), 361–368 (2008)

    Article  Google Scholar 

  11. Hafkemeyer, K.M., Galjan, W., Tomasik, J.M., Schroeder, D., Krautschneider, W.H.: System-on-Chip Approach for Biomedical Signal Acquisition. In: 18th ProRISC Workshop, Veldhoven, pp. 26–29 (2007)

    Google Scholar 

  12. Winter, B.B., Webster, J.G.: Driven-right-leg circuit design. IEEE Trans. Biomed. Eng. 30, 62–66 (1983)

    Article  Google Scholar 

  13. Meier auf der Heide, P., Bronskowski, C., Tomasik, J.M., Schroeder, D.: A CMOS operational amplifier with constant 68 phase margin over its whole range of noise-power trade-off programmability. In: Proceedings 33nd ESSCIRC 2007, Munich, pp. 452–455 (2007)

    Google Scholar 

  14. Tomasik, J.M., Hafkemeyer, K.M., Galjan, W., Schroeder, D., Krautschneider, W.H.: A 130nm CMOS Programmable Operational Amplifier. In: Proceedings NORCHIP 2008, Tallinn (2008)

    Google Scholar 

  15. Allen, P.E., Holberg, D.R.: CMOS Analog Circuit Design. Oxford University Press, New York (2002)

    Google Scholar 

  16. Maxim Integrated Products: Choosing the optimum buffer/ADC combination for your application. Application Note 1094 (2000)

    Google Scholar 

  17. Medeiro, F., Perez-Verdu, B., de la Rosa, J.M., Rodriguez-Vazquez, A.: Using CAD Tools for Shortening the Design Cycle of High-Performance ΣΔM: A 16.4bit 9.6kHz 1.71mW ΣΔM in CMOS 0.7μm Technology. International Journal of Circuit Theory and Applications 25, 319–334 (1997)

    Article  Google Scholar 

  18. Fuchs, B.: Integrierte Sensorschaltungen zur EKG-und EEG-Ableitung mit praediktiver Signalverarbeitung. PhD thesis, Institute of Nanoelectronics, Hamburg University of Technology. Shaker Verlag, Aachen (2004)

    Google Scholar 

  19. Dijkstra, E., Nys, O., Piguet, C., Degrauwe, M.: On the use of modulo arithmetic comb filters in sigma delta modulators. In: IEEE Proc. ICASSP 1988, pp. 2001–2004 (1988)

    Google Scholar 

  20. Wagner, F., Jakobi, C., Tomasik, J.M., Hafkemeyer, K.M., Galjan, W., Schroeder, D., Krautschneider, W.H.: Design and Implementation of an Automated Test Environment for Signal-Acquisition ASICs. In: Semiconductor Conference Dresden (SCD), Dresden (2008)

    Google Scholar 

  21. Atmel Corporation, San Jose, USA, http://www.atmel.com

  22. Future Technology Devices International Limited, Glasgow, UK, http://www.ftdichip.com

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tomasik, J.M., Galjan, W., Hafkemeyer, K.M., Schroeder, D., Krautschneider, W.H. (2013). A Configurable Integrated Circuit for Biomedical Signal Acquisition. In: Fred, A., Filipe, J., Gamboa, H. (eds) Biomedical Engineering Systems and Technologies. BIOSTEC 2011. Communications in Computer and Information Science, vol 273. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29752-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29752-6_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29751-9

  • Online ISBN: 978-3-642-29752-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics