Advertisement

Reconstructing Gapless Ancestral Metabolic Networks

  • Esa Pitkänen
  • Mikko Arvas
  • Juho Rousu
Part of the Communications in Computer and Information Science book series (CCIS, volume 273)

Abstract

We present a method for inferring the structure of ancestral metabolic networks directly from the networks of observed species and their phylogenetic tree. In particular, we aim to minimize the number of mutations on the phylogenetic tree, whilst keeping the ancestral networks structurally feasible, or gapless. In gapless metabolic networks all reactions are reachable from external substrates such as nutrients.

To this end, we introduce the gapless minimum mutation problem: finding parsimonious phylogenies of gapless metabolic networks when the topology of the phylogenetic tree is given, but the content of ancestral nodes is unknown. This formulation can be extended also to infer reactions that are missing from the input metabolic networks due to errors in annotation transfer, for example.

The gapless minimum mutation problem is shown to be computationally hard to solve even approximatively. We then propose an efficient dynamic programming based heuristic that combines knowledge on both the metabolic network topology and phylogeny of species. Reconstruction of each ancestral network is guided by the heuristic to minimize the total phylogeny cost. We experiment by reconstructing phylogenies generated under a simple random model and derived from KEGG for a number of fungal species.

Keywords

Metabolic Network Internal Node Ancestral Node Gapped Reaction Fungal Phylogeny 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alon, N., Moshkovitz, D., Safra, S.: Algorithmic construction of sets for k-restrictions. ACM Trans. Algorithms 2(2), 153–177 (2006)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Arvas, M., Kivioja, T., Mitchell, A., Saloheimo, M., Ussery, D., Penttilä, M., Oliver, S.: Comparison of protein coding gene contents of the fungal phyla Pezizomycotina and Saccharomycotina. BMC Genomics 8(1), 325 (2007)CrossRefGoogle Scholar
  3. 3.
    Borenstein, E., Kupiec, M., Feldman, M.W., Ruppin, E.: Large-scale reconstruction and phylogenetic analysis of metabolic environments. PNAS 105(38), 14482–14487 (2008)CrossRefGoogle Scholar
  4. 4.
    Bourque, G., Sankoff, D.: Improving gene network inference by comparing expression time-series across species, developmental stages or tissues. J. Bioinform. Comput. Biol. 2(4), 765–783 (2004)CrossRefGoogle Scholar
  5. 5.
    Caetano-Anollés, G., Yafremava, L., Gee, H., Caetano-Anollés, D., Kim, H., Mittenthal, J.: The origin and evolution of modern metabolism. The International Journal of Biochemistry & Cell Biology 41(2), 285–297 (2009)CrossRefGoogle Scholar
  6. 6.
    Clemente, J.C., Ikeo, K., Valiente, G., Gojobori, T.: Optimized ancestral state reconstruction using sankoff parsimony. BMC Bioinformatics 10(51) (2009)Google Scholar
  7. 7.
    Clemente, J., Satou, K., Valiente, G.: Phylogenetic reconstruction from non-genomic data. Bioinformatics 23(2), e110 (2007)CrossRefGoogle Scholar
  8. 8.
    Dandekar, T., Schuster, S., Snel, B., Huynen, M., Bork, P.: Pathway alignment: application to the comparative analysis of glycolytic enzymes. Biochem. J. 343(Pt 1), 115–124 (1999)CrossRefGoogle Scholar
  9. 9.
    Deacon, J.: Fungal biology. Wiley-Blackwell (2006)Google Scholar
  10. 10.
    Fitch, W.M.: Toward defining the course of evolution: minimum change for a specific tree topology. Syst. Zool. 20, 406–416 (1971)CrossRefGoogle Scholar
  11. 11.
    Fitzpatrick, D., Logue, M., Stajich, J., Butler, G.: A fungal phylogeny based on 42 complete genomes derived from supertree and combined gene analysis. BMC Evolutionary Biology 6(1), 99 (2006)CrossRefGoogle Scholar
  12. 12.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman (1979)Google Scholar
  13. 13.
    Gusfield, D.: Algorithms on Strings, Trees, and Sequences. Cambridge University Press (1997)Google Scholar
  14. 14.
    Handorf, T., Christian, N., Ebenhöh, O., Kahn, D.: An environmental perspective on metabolism. Journal of Theoretical Biology 252(3), 530–537 (2008)CrossRefGoogle Scholar
  15. 15.
    Jamshidi, N., Palsson, B.O.: Investigating the metabolic capabilities of Mycobacterium tuberculosis H37Rv using the in silico strain iNJ661 and proposing alternative drug targets. BMC Systems Biology 1(26) (2007)Google Scholar
  16. 16.
    Kanehisa, M., Araki, M., Goto, S., Hattori, M., Hirakawa, M., Itoh, M., Katayama, T., Kawashima, S., Okuda, S., Tokimatsu, T., Yamanishi, Y.: Kegg for linking genomes to life and the environment. Nucleic Acids Res. 36, D480–D484 (2008)CrossRefGoogle Scholar
  17. 17.
    Lacroix, V., Cottret, L., Thebault, P., Sagot, M.F.: An introduction to metabolic networks and their structural analysis. IEEE Transactions on Computational Biology and Bioinformatics 5(4), 594–617 (2008)CrossRefGoogle Scholar
  18. 18.
    Mano, A., Tuller, T., Bj, O., Pinter, R.Y.: Comparative classification of species and the study of pathway evolution based on the alignment of metabolic pathways. BMC Bioinformatics 11(suppl. 1), S38 (2010)CrossRefGoogle Scholar
  19. 19.
    Mithani, A., Preston, G., Hein, J.: A bayesian approach to the evolution of metabolic networks on a phylogeny. PLoS Computational Biology 6(8) (2010)Google Scholar
  20. 20.
    Mithani, A., Preston, G.M., Hein, J.: A stochastic model for the evolution of metabolic networks with neighbor dependence. Bioinformatics 25(12), 1528–1535 (2009)CrossRefGoogle Scholar
  21. 21.
    Palsson, B.: Systems biology: properties of reconstructed networks. Cambridge University Press, Cambridge (2006)CrossRefGoogle Scholar
  22. 22.
    Pitkänen, E., Rantanen, A., Rousu, J., Ukkonen, E.: Finding Feasible Pathways in Metabolic Networks. In: Bozanis, P., Houstis, E.N. (eds.) PCI 2005. LNCS, vol. 3746, pp. 123–133. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  23. 23.
    Pitkänen, E., Rantanen, A., Rousu, J., Ukkonen, E.: A computational method for reconstructing gapless metabolic networks. In: Proceedings of the 2nd International Conference on Bioinformatics Research and Development (BIRD 2008). CCIS, vol. 13. Springer, Heidelberg (2008)Google Scholar
  24. 24.
    Pitkänen, E., Rousu, J., Ukkonen, E.: Computational methods for metabolic reconstruction. Current Opinion in Biotechnology 21(1), 70–77 (2010)CrossRefGoogle Scholar
  25. 25.
    Raman, K., Chandra, N.: Flux balance analysis of biological systems: applications and challenges. Briefings in Bioinformatics 10(4), 435–449 (2009)CrossRefGoogle Scholar
  26. 26.
    Rantanen, A., Rousu, J., Jouhten, P., Zamboni, N., Maaheimo, H., Ukkonen, E.: An analytic and systematic framework for estimating metabolic flux ratios from 13 C tracer experiments. BMC Bioinformatics 9(1), 266 (2008)CrossRefGoogle Scholar
  27. 27.
    Raz, R., Safra, S.: A sub-constant error-probability low-degree test, and a sub-constant error-probability PCP characterization of NP. In: Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing, pp. 475–484 (1997)Google Scholar
  28. 28.
    Sankoff, D.: Minimal mutation trees of sequences. SIAM J. Appl. 28, 35–42 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Sharan, R., Ideker, T.: Modeling cellular machinery through biological network comparison. Nature Biotechnology 24, 427–433 (2006)CrossRefGoogle Scholar
  30. 30.
    Sigurdsson, M.I., Jamshidi, N., Jonsson, J.J., Palsson, B.O.: Genome-scale network analysis of imprinted human metabolic genes. Epigenetics 4(1), 43–46 (2009)CrossRefGoogle Scholar
  31. 31.
    Tohsato, Y., Matsuda, H., Hashimoto, A.: A multiple alignment algorithm for metabolic pathway analysis using enzyme hierarchy. In: Proceedings of the Eighth International Conference on Intelligent Systems for Molecular Biology, pp. 376–383 (2000)Google Scholar
  32. 32.
    Tuller, T., Birin, H., Gophna, U., Kupiec, M., Ruppin, E.: Reconstructing ancestral gene content by coevolution. Genome Res. 20(1), 122–132 (2010)CrossRefGoogle Scholar
  33. 33.
    Wagner, A.: Evolutionary constraints permeate large metabolic networks. BMC Evolutionary Biology 9(1), 231 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Esa Pitkänen
    • 1
  • Mikko Arvas
    • 2
  • Juho Rousu
    • 1
  1. 1.Department of Computer ScienceUniversity of HelsinkiHelsinkiFinland
  2. 2.VTT Technical Research Centre of FinlandOtaniemiFinland

Personalised recommendations