Designing Future BCIs: Beyond the Bit Rate

  • Melissa Quek
  • Johannes Höhne
  • Roderick Murray-Smith
  • Michael Tangermann
Chapter
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)

Abstract

The last 20 years of success in BCI design have led to the realisation of basic control functions by engineers, psychologists, machine learners and end users. These basic functions provide us with the freedom to design future BCI applications that go beyond the reliability of isolated intention detection events. Such a design process for the overall system comprises finding a suitable control metaphor, respecting neuroergonomic principles, designing visually aesthetic feedback, dealing with the learnability of the system, creating an effective application structure (navigation), and exploring the power of social aspects of an interactive BCI system.Designing a human-machine system also involves eliciting a user’s knowledge, preferences, requirements and priorities. In order not to overload end users with evaluation tasks and to take into account issues specific to BCI, techniques and processes from other fields that aim to acquire these must be adapted for applications that use BCI. We present examples which illustrate this process.

Keywords

Motor Imagery Event Related Potential Music Player Input Technology Event Related Potential Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. .
    Allison, B.Z., Pineda, J.A.: Effects of SOA and flash pattern manipulations on ERPs, performance, and preference: implications for a BCI system. Int. J. Psychophysiol. 59(2), 127–140 (2006)Google Scholar
  2. .
    Babiloni, F., Cincotti, F., Lazzarini, L., Millan, J., Mourinõ, J., Varsta, M., Heikkonen, J., Bianchi, L., Marciani, M.G.: Linear classification of low-resolution EEG patterns produced by imagined hand movements. IEEE Trans. Rehabil. Eng. 8(2), 186–188 (2000)Google Scholar
  3. .
    Ball, S., Rousell, J.: Virtual Disability: Simulations as an Aid to Lecturers’ Understanding of Disability. Computers Helping People with Special Needs, pp. 624–624 (2004)Google Scholar
  4. .
    Bensch, M., Karim, A., Mellinger, J., Hinterberger, T., Tangermann, M., Bogdan, M., Rosenstiel, W., Birbaumer, N.: Nessi: an EEG-controlled web browser for severely paralyzed patients. Comp. Intell. Neurosci. 2007, 71,863 (2007)Google Scholar
  5. .
    Biswas, P., Robinson, P.: Simulation to predict performance of assistive interfaces. In: Proceedings of the 9th International ACM SIGACCESS Conference on Computers and Accessibility, ACM, pp. 227–228 (2007)Google Scholar
  6. .
    Biswas, P., Robinson, P.: Automatic evaluation of assistive interfaces. In: Proceedings of the 13th International Conference on Intelligent User Interfaces, ACM, pp. 247–256 (2008)Google Scholar
  7. .
    Blankertz, B., Dornhege, G., Schäfer, C., Krepki, R., Kohlmorgen, J., Müller, K.R., Kunzmann, V., FLosch, Curio, G.: Boosting bit rates and error detection for the classification of fast-paced motor commands based on single-trial EEG analysis. IEEE Trans. Neural Syst. Rehabil. Eng. 11(2), 127–131 (2003)Google Scholar
  8. .
    Blankertz, B., Lemm, S., Treder, M.S., Haufe, S., Müller, K.R.: Single-trial analysis and classification of ERP components – a tutorial. Neuroimage 56, 814–825 (2011)Google Scholar
  9. .
    Burgstahler, S., Doe, T.: Disability-related simulations: If, when, and how to use them in professional development. Rev. Disabil. Stud. 1(2), 4–17 (2004)Google Scholar
  10. .
    Carlson, T., Demiris, Y.: Human-wheelchair collaboration through prediction of intention and adaptive assistance. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 3926–3931 (2008)Google Scholar
  11. .
    Chatterjee, A., Aggarwal, V., Ramos, A., Acharya, S., Thakor, N.: A brain–computer interface with vibrotactile biofeedback for haptic information. J. Neuroeng. Rehabil. 4, 40 (2007)Google Scholar
  12. .
    Cincotti, F., Kauhanen, L., Aloise, F., Palomaki, T., Caporusso, N., Jylanki, P., Mattia, D., Babiloni, F., Vanacker, G., Nuttin, M., Marciani, M.G., del R Millán, J.: Preliminary experimentation on vibrotactile feedback in the context of mu-rhythm based BCI. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference, pp. 4739–4742 (2007a)Google Scholar
  13. .
    Cincotti, F., Kauhanen, L., Aloise, F., Palomäki, T., Caporusso, N., Jylänki, P., Mattia, D., Babiloni, F., Vanacker, G., Nuttin, M., Marciani, M.G., del R Millán, J.: Vibrotactile feedback for brain–computer interface operation. Intell. Neurosci. 2007, 7–7 (2007b)Google Scholar
  14. .
    Curran, A., Stokes, M.J.: Learning to control brain activity: A review of the production and control of EEG components for driving brain–computer interface (BCI) systems. Brain Cogn. 51(3), 326–336 (2003)Google Scholar
  15. .
    Dix, A., Finlay, J., Abowd, G., Beale, R.: Human–computer interaction. Prentice Hall, Hemel Hempstead (2004)Google Scholar
  16. .
    Fait, H., Mankoff, J.: EASE: A Simulation Tool for Accessible Design. Computer Science Division, University of California (2003)Google Scholar
  17. .
    Farwell, L.A., Donchin, E.: Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr. Clin. Neurophysiol. 70, 510–523 (1988)Google Scholar
  18. .
    Fazli, S., Danóczy, M., Popescu, F., Blankertz, B., Müller, K.R.: Using rest class and control paradigms for brain computer interfacing. In: Proc. of the 10th Int. Work-Conference on Artificial Neural Networks: Part I: Bio-Inspired Systems: Computational and Ambient Intelligence, Heidelberg, IWANN ’09, pp. 651–665. Springer, Berlin (2009)Google Scholar
  19. .
    Felton, E.A., Radwin, R.G., Wilson, J.A., Williams, J.C.: Evaluation of a modified fitts law brain–computer interface target acquisition task in able and motor disabled individuals. J. Neural Eng. 6(5), 056,002 (2009)Google Scholar
  20. .
    Felzer, T., Strah, B., Nordmann, R.: Automatic and self-paced scanning for alternative text entry. In: Proc. IASTED Int. Conf. on Telehealth/Assistive Technologies, Telehealth/AT ’08, pp. 1–6. ACTA, Anaheim, CA, USA (2008)Google Scholar
  21. .
    Felzer, T., Nordmann, R., Rinderknecht, S.: Scanning-based human–computer interaction using intentional muscle contractions. Universal Access in Human–Computer Interaction Intelligent and Ubiquitous Interaction Environments, pp. 509–518 (2009)Google Scholar
  22. .
    Flemisch, O., Adams, A., Conway, S., Goodrich, K., Palmer, M., Schutte, P.: The H-Metaphor as a guideline for vehicle automation and interaction. Tech. Rep. NASA/TM–2003-212672, NASA (2003)Google Scholar
  23. .
    Gajos, K.Z., Everitt, K., Tan, D.S., Czerwinski, M., Weld, D.S.: Predictability and accuracy in adaptive user interfaces. In: Proc. of 26th annual SIGCHI conference on Human factors in computing systems, CHI ’08, pp. 1271–1274. ACM, New York, NY, USA (2008)Google Scholar
  24. .
    Goodrich, K., Schutte, P., Flemisch, F., Williams, R.: Application of the H-mode, a design and interaction concept for highly automated vehicles, to aircraft. In: Proc. IEEE Digital Avionics Syst. Conf., pp. 1–13 (2006)Google Scholar
  25. .
    Guger, C., Schlogl, A., Neuper, C., Walterspacher, D., Strein, T., Pfurtscheller, G.: Rapid prototyping of an EEG-based brain–computer interface (BCI). IEEE Trans. Neural Syst. Rehabil. Eng. 9(1), 49–58 (2001)Google Scholar
  26. .
    Hailpern, J., Danilevsky, M., Harris, A., Karahalios, K., Dell, G., Hengst, J.: Aces: promoting empathy towards aphasia through language distortion emulation software. In: Proc. of the 2011 annual conference on Human factors in computing systems, CHI ’11, pp. 609–618. ACM, New York, NY, USA (2011)Google Scholar
  27. .
    Halder, S., Rea, M., Andreoni, R., Nijboer, F., Hammer, E.M., Kleih, S.C., Birbaumer, N., Kübler, A.: An auditory oddball brain–computer interface for binary choices. Clin. Neurophysiol. 121(4), 516–523 (2010)Google Scholar
  28. .
    Heger, D., Putze, F., Schultz, T.: Online workload recognition from EEG data during cognitive tests and human-machine interaction. In: Proc. 33rd annual German conference on Advances in artificial intelligence, KI’10, pp. 410–417. Springer, Berlin, Heidelberg (2010)Google Scholar
  29. .
    Hill, J., Farquhar, J., Martens, S., Bießmann, F., Schölkopf, B.: Effects of Stimulus Type and of Error-Correcting Code Design on BCI Speller Performance. Adv. Neural Inf. Process. Syst. 21, 665–672 (2009)Google Scholar
  30. .
    Hill, N., Lal, T.N., Tangermann, M., Hinterberger, T., Widman, G., Elger, C.E., Schölkopf, B., Birbaumer, N.: Classifying event-related desynchronization in EEG, ECoG and MEG signals. In: Dornhege, G., d R Millán, J., Hinterberger, T., McFarland, D., Müller, K.R. (eds.) Toward Brain–Computer Interfacing, pp. 235–260. MIT press, Cambridge, MA (2007)Google Scholar
  31. .
    Hitchcock, D., Taylor, A.: Simulation for Inclusion–true user centred design. In: Proceedings of International Conference on Inclusive Design, Royal College of Art, London, Citeseer (2003)Google Scholar
  32. .
    Hitchcock, D., Lockyer, S., Cook, S., Quigley, C.: Third age usability and safety–an ergonomics contribution to design. Int. J. Hum. Comput. Stud. 55(4), 635–643 (2001)Google Scholar
  33. .
    Höhne, J., Schreuder, M., Blankertz, B., Tangermann, M.: A novel 9-class auditory ERP paradigm driving a predictive text entry system. Front. Neuroprosthetics 99(5), (2011)Google Scholar
  34. .
    Houde, S., Hill, C.: What do prototypes prototype? Handbook Hum. Comput. Interact. 2, 367–381 (1997)Google Scholar
  35. .
    Johnson, J.: Designing with the Mind in Mind: a Simple Guide to Understanding User Interface Design Rules. Morgan Kaufmann, Burlington (2011)Google Scholar
  36. .
    Kübler, A., Kotchoubey, B., Kaiser, J., Wolpaw, J.P., Birbaumer, N.: Brain–computer communication: Unlocking the locked in. Psychol. Bull. 127(3), 358–375 (2001)Google Scholar
  37. .
    Kübler, A., Furdea, A., Halder, S., Hammer, E.M., Nijboer, F., Kotchoubey, B.: A brain–computer interface controlled auditory event-related potential (p300) spelling system for locked-in patients. Ann. N. Y. Acad. Sci. 1157, 90–100 (2009)Google Scholar
  38. .
    Langer, E.J., Roth, J.: Heads I win, tails it’s chance: The illusion of control as a function of the sequence of outcomes in a purely chance task. J. Pers. Soc. Psychol. 32(6), 951–955 (1975)Google Scholar
  39. .
    Leeb, R., Lee, F., Keinrath, C., Scherer, R., Bischof, H., Pfurtscheller, G.: Brain–computer communication: Motivation, aim, and impact of exploring a virtual apartment. IEEE Trans. Neural Syst. Rehabil. Eng. 15(4), 473–482 (2007)Google Scholar
  40. .
    Lemm, S., Blankertz, B., Curio, G., Müller, K.R.: Spatio-spectral filters for improving classification of single trial EEG. IEEE Trans. Biomed. Eng. 52(9), 1541–1548 (2005)Google Scholar
  41. .
    Millán, J.: On the need for on-line learning in brain–computer interfaces. In: Proceedings of the International Joint Conference on Neural Networks, Budapest, Hungary, iDIAP-RR 03-30 (2004)Google Scholar
  42. .
    Millán JdR., Rupp, R., Mueller-Putz, G., Murray-Smith, R., Giugliemma, C., Tangermann, M., Vidaurre, C., Cincotti, F., Kübler, A., Leeb, R., Neuper, C., Müller, K.R., Mattia, D.: Combining brain–computer interfaces and assistive technologies: State-of-the-art and challenges. Front. Neurosci. 4 161 (2010)Google Scholar
  43. .
    Mönßinger, J., Halder, S., Kleih, S., Furdea, A., Raco, V., Hösle, A., Kübler, A.: Brain painting: first evaluation of a new brain–computer interface application with als-patients and healthy volunteers. Front. Neurosci. 4, 1–11 (2010)Google Scholar
  44. .
    Müller, K.R., Krauledat, M., Dornhege, G., Curio, G., Blankertz, B.: Machine learning and applications for brain–computer interfacing. In: Smith, M.J., Salvendy, G. (eds.) Human Interface, Part I, HCII 2007, LNCS, vol. 4557, pp. 705–714. Springer, Berlin, Heidelberg (2007)Google Scholar
  45. .
    Nielsen, J.: Usability Engineering. Academic Press, Morgan Kaufmann, San Francisco (1993)Google Scholar
  46. .
    Norman, D.: Emotional design. Basic Books, New York (2005)Google Scholar
  47. .
    Norman, K.L.: The Psychology of Menu Selection: Designing Cognitive Control at the Human/Computer Interface. Greenwood, Westport, CT, USA (1991)Google Scholar
  48. .
    Obermaier, B., Neuper, C., Guger, C., Pfurtscheller, G.: Information transfer rate in a five-classes brain–computer interface. IEEE Trans. Neural Syst. Rehabil. Eng. 9(3), 283–288 (2001). DOI 10.1109/7333.948456Google Scholar
  49. .
    Patel, S.H., Azzam, P.N.: Characterization of N200 and P300: selected studies of the Event-Related Potential. Int. J. Med. Sci. 2, 147–154 (2005)Google Scholar
  50. .
    Plass-Oude Bos, D., Poel, M., Nijholt, A.: A study in user centered design and evaluation of mental tasks for BCI. In: Lee, K.T., Tsai, W.H., Liao, H.Y.M., Chen, T., Hsieh, J.W., Tseng, C.C. (eds.) Proc. of the 17th International Multimedia Modeling Conference, MMM 2011, Taipei, Taiwan, Lecture Notes in Computer Science, vol. 6524, pp. 122–134. Springer, Berlin, (2011)Google Scholar
  51. .
    Polich, J.: Updating P300: an integrative theory of P3a and P3b. Clin. Neurophysiol. 118, 2128–2148 (2007)Google Scholar
  52. .
    Polich, J., Ellerson, P.C., Cohen, J.: P300, stimulus intensity, modality, and probability. Int. J. Psychophysiol. 23, 55–62 (1996)Google Scholar
  53. .
    Quek, M., Boland, D., Williamson, J., Murray-Smith, R., Tavella, M., Perdikis, S., Schreuder, M., Tangermann, M.: Simulating the feel of brain–computer interfaces for design, development and social interaction. In: Proc. of the 2011 annual conference on Human factors in computing systems, CHI ’11, pp. 25–28. ACM, New York, NY, USA (2011)Google Scholar
  54. .
    Ravden, D., Polich, J.: Habituation of P300 from visual stimuli. Int. J. Psychophysiol. 30(3), 359–365 (1998)Google Scholar
  55. .
    Schreuder, M., Tangermann, M., Blankertz, B.: Initial results of a high-speed spatial auditory BCI. Int. J. Bioelectromagn. 11(2), 105–109 (2009)Google Scholar
  56. .
    Schreuder, M., Blankertz, B., Tangermann, M.: A new auditory multi-class brain–computer interface paradigm: Spatial hearing as an informative cue. Plos One 5(4), e9813 (2010)Google Scholar
  57. .
    Schreuder, M.; Höhne, J.; Treder, M.; Blankertz, B.; Tangermann, M.; , Performance optimization of ERP-based BCIs using dynamic stopping. IEEE Eng. Med. Biol. Soc. (2011) pp.4580–4583Google Scholar
  58. .
    Shneiderman, B., Plaisant, C., Cohen, M., Jacobs, S.: Designing the User Interface: Strategies for Effective Human–Computer Interaction (5th edn.). Addison Wesley, Boston (2009)Google Scholar
  59. .
    Simpson, R.C., Koester, H.H.: Adaptive one-switch row-column scanning. IEEE Trans. Rehabil. Eng. 7(4), 464–473 (1999)Google Scholar
  60. .
    Strachan, S., Murray-Smith, R., O’Modhrain, S.: Bodyspace: inferring body pose for natural control of a music player. In: CHI ’07 extended abstracts on Human factors in computing systems, CHI EA ’07, pp. 2001–2006. ACM, New York, NY, USA (2007)Google Scholar
  61. .
    Szekely, P.: User interface prototyping: Tools and techniques. In: Software Engineering and Human–Computer Interaction, pp. 76–92. Springer, Heidelberg (1995)Google Scholar
  62. .
    Thimbleby, H.: Understanding User Centred Design (UCD) for People with Special Needs. Computers Helping People with Special Needs, pp. 1–17 (2008)Google Scholar
  63. .
    Tonin, L., Leeb, R., Tavella, M., Perdikis, S., del R Millán, J.: The role of shared-control in BCI-based telepresence. In: Proc. of 2010 IEEE International Conference on Systems, Man and Cybernetics (2010)Google Scholar
  64. .
    Townsend, G., Graimann, B., Pfurtscheller, G.: Continuous EEG classification during motor imagery-simulation of an asynchronous BCI. IEEE Trans. Neural Syst. Rehabil. Eng. 12(2), 258–265 (2004)Google Scholar
  65. .
    Tractinsky, N., Hassenzahl, M.: Arguing for aesthetics in human–computer interaction. I-com 4(3/2005), 66–68 (2005)Google Scholar
  66. .
    Tractinsky, N., Katz, A., Ikar, D.: What is beautiful is usable. Interact. Comput. 13(2), 127–145 (2000)Google Scholar
  67. .
    Treder, M.S., Blankertz, B.: (C)overt attention and visual speller design in an ERP-based brain–computer interface. Behav. Brain Funct. 6, 28 (2010)Google Scholar
  68. .
    Vidaurre, C., Kawanabe, M., von Bünau, P., Blankertz, B., Müller, K.R.: Toward unsupervised adaptation of lda for brain–computer interfaces. IEEE Trans. Biomed. Eng. 58(3), 587–597 (2011a)Google Scholar
  69. .
    Vidaurre, C., Sannelli, C., Müller, K.R., Blankertz, B.: Machine-learning based co-adaptive calibration. Neural Comput. 23(3), 791–816 (2011b)Google Scholar
  70. .
    Virzi, R.A., Sokolov, J.L., Karis, D.: Usability problem identification using both low- and high-fidelity prototypes. In: Proc. of the SIGCHI conference on Human factors in computing systems: common ground, CHI ’96, pp. 236–243. ACM, New York, NY, USA (1996)Google Scholar
  71. .
    Williamson, J., Murray-Smith, R., Blankertz, B., Krauledat, M., Müller, K.R.: Designing for uncertain, asymmetric control: Interaction design for brain–computer interfaces. Int. J. Hum. Comput. Stud. 67(10), 827–841 (2009)Google Scholar
  72. .
    Wilson, A.: Sensor-and recognition-based input for interaction. In: Sears, A., Jacko, J. (eds.) The Human Computer Interaction Handbook, pp. 177–200. Lawrence Erlbaum Associates (2007)Google Scholar
  73. .
    Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain–computer interfaces for communication and control. Clin. Neurophysiol. 113(6), 767–791 (2002)Google Scholar
  74. .
    Zhang, B., Wang, J., Fuhlbrigge, T.: A review of the commercial brain–computer interface technology from perspective of industrial robotics. In: 2010 IEEE International Conference on Automation and Logistics ICAL 2010, pp. 379–384 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Melissa Quek
    • 1
  • Johannes Höhne
    • 2
  • Roderick Murray-Smith
    • 1
  • Michael Tangermann
    • 2
  1. 1.School of Computing ScienceUniversity of GlasgowGlasgowUK
  2. 2.BBCI LabBerlin Institute of TechnologyBerlinGermany

Personalised recommendations