Brain Computer Interface for Hand Motor Function Restoration and Rehabilitation

  • Donatella Mattia
  • Floriana Pichiorri
  • Marco Molinari
  • Rüdiger Rupp
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)


Long-term disability is often associated with persistent impairment of an upper limb. In this respect, neurological rehabilitation aims to lessen motor impairment and related disability either by restoring functions with the help of assistive devices to aid daily living activities or by applying rehabilitative protocols based on task-specific training and practice to enhance recovery of motor functions. Brain–computer interface technology is a promising rehabilitation device in every such sense. On the one hand, BCI systems can be utilized to bypass central nervous system injury by controlling neuroprosthetics for patient’s arm to manage reach and grasp functional activities in peripersonal space. On the other, BCI technology can encourage motor training and practice by offering an on-line feedback about brain signals associated with mental practice, motor intention and other neural recruitment strategies, and thus helping to guide neuroplasticity associated with post-stroke motor impairment and its recovery. This chapter aims to provide a focused overview of non invasive-BCI technology advancement to serve patients in the field of restoration and recovery of hand motor function impairment accompanying spinal cord injuries and stroke.


Spinal Cord Injury Stroke Patient Transcranial Magnetic Stimulation Motor Imagery Stroke Survivor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is supported by the European ICT Programme Project FP7-224631 (TOBI—Tools for Brain Computer Interaction). This chapter only reflects the authors’ views and funding agencies are not liable for any use that may be made of the information contained herein.


  1. 1.
    Alon, G., Levitt, A.F., McCarthy, P.A.: Functional electrical stimulation enhancement of upper extremity functional recovery during stroke rehabilitation: a pilot study. Neurorehabil. Neural Repair 21(3), 207–215 (2007). DOI 10.1177/1545968306297871Google Scholar
  2. 2.
    Alon, G., McBride, K.: Persons with C5 or C6 tetraplegia achieve selected functional gains using a neuroprosthesis. Arch. Phys. Med. Rehabil. 84(1), 119–124 (2003). DOI 10.1053/apmr.2003.50073Google Scholar
  3. 3.
    Anderson, K.D.: Targeting recovery: priorities of the spinal cord-injured population. J. Neurotrauma 21(10), 1371–1383 (2004)Google Scholar
  4. 4.
    Ang, K.K., Guan, C., Chua, K.S., Ang, B.T., Kuah, C., Wang, C., Phua, K.S., Chin, Z.Y., Zhang, H.: Clinical study of neurorehabilitation in stroke using EEG-based motor imagery brain–computer interface with robotic feedback. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2010, 5549–5552 (2010). DOI 10.1109/IEMB.S.2010.5626782Google Scholar
  5. 5.
    Ashworth, B.: Preliminary trial of carisoprodol in multiple sclerosis. Practitioner 192, 540–542 (1964)Google Scholar
  6. 6.
    Backus, D.: Exploring the potential for neural recovery after incomplete tetraplegia through nonsurgical interventions. PM R 2(12 Suppl 2), S279–285 (2010). DOI S1934-1482(10)01196-2Google Scholar
  7. 7.
    Broetz, D., Braun, C., Weber, C., Soekadar, S.R., Caria, A., Birbaumer, N.: Combination of brain–computer interface training and goal-directed physical therapy in chronic stroke: a case report. Neurorehabil. Neural Repair 24(7), 674–679 (2010). DOI 1545968310368683Google Scholar
  8. 8.
    Buch, E., Weber, C., Cohen, L.G., Braun, C., Dimyan, M.A., Ard, T., Mellinger, J., Caria, A., Soekadar, S., Fourkas, A., Birbaumer, N.: Think to move: a neuromagnetic brain–computer interface (BCI) system for chronic stroke. Stroke 39(3), 910–917 (2008). DOI STROKEAHA107.505313Google Scholar
  9. 9.
    Caria, A., Weber, C., Brotz, D., Ramos, A., Ticini, L.F., Gharabaghi, A., Braun, C., Birbaumer, N.: Chronic stroke recovery after combined BCI training and physiotherapy: a case report. Psychophysiology 48(4), 578–582 (2011). DOI 10.1111/j.1469-8986.2010.01117.xGoogle Scholar
  10. 10.
    Cauraugh, J.H., Kim, S.: Two coupled motor recovery protocols are better than one: electromyogram-triggered neuromuscular stimulation and bilateral movements. Stroke 33(6), 1589–1594 (2002)Google Scholar
  11. 11.
    Cauraugh, J.H., Kim, S.B.: Chronic stroke motor recovery: duration of active neuromuscular stimulation. J. Neurol Sci. 215(1–2), 13–19 (2003). DOI S0022510X03001692Google Scholar
  12. 12.
    Cauraugh, J., Light, K., Kim, S., Thigpen, M., Behrman, A.: Chronic motor dysfunction after stroke: recovering wrist and finger extension by electromyography-triggered neuromuscular stimulation. Stroke 31(6), 1360–1364 (2000)Google Scholar
  13. 13.
    Chae, J., Bethoux, F., Bohine, T., Dobos, L., Davis, T., Friedl, A.: Neuromuscular stimulation for upper extremity motor and functional recovery in acute hemiplegia. Stroke 29(5), 975–979 (1998)Google Scholar
  14. 14.
    Cincotti, F., Mattia, D., Aloise, F., Bufalari, S., Schalk, G., Oriolo, G., Cherubini, A., Marciani, M.G., Babiloni, F.: Non-invasive brain–computer interface system: towards its application as assistive technology. Brain Res. Bull. 75(6), 796–803 (2008). DOI 10.1016/j.brainresbull.2008.01.007Google Scholar
  15. 15.
    Crago, P.E., Memberg, W.D., Usey, M.K., Keith, M.W., Kirsch, R.F., Chapman, G.J., Katorgi, M.A., Perreault, E.J.: An elbow extension neuroprosthesis for individuals with tetraplegia. IEEE Trans. Rehabil. Eng. 6(1), 1–6 (1998)Google Scholar
  16. 16.
    Creasey, G.H., Kilgore, K.L., Brown-Triolo, D.L., Dahlberg, J.E., Peckham, P.H., Keith, M.W.: Reduction of costs of disability using neuroprostheses. Assist. Technol. 12(1), 67–75 (2000). DOI 10.1080/10400435.2000.10132010Google Scholar
  17. 17.
    Daly, J.J., Cheng, R., Rogers, J., Litinas, K., Hrovat, K., Dohring, M.: Feasibility of a new application of noninvasive Brain Computer Interface (BCI): a case study of training for recovery of volitional motor control after stroke. J. Neurol Phys. Ther. 33(4), 203–211 (2009). DOI 10.1097/NPT.0b013e3181c1fc0bGoogle Scholar
  18. 18.
    Daly, J.J., Wolpaw, J.R.: Brain–computer interfaces in neurological rehabilitation. Lancet Neurol 7(11), 1032–1043 (2008). DOI S1474-4422(08)70223-0Google Scholar
  19. 19.
    Dietz, V., Curt, A.: Neurological aspects of spinal-cord repair: promises and challenges. Lancet Neurol. 5(8), 688–694 (2006). DOI S1474-4422(06)70522-1Google Scholar
  20. 20.
    Dimyan, M.A., Cohen, L.G.: Neuroplasticity in the context of motor rehabilitation after stroke. Nat. Rev. Neurol. 7(2), 76–85 (2011). DOI nrneurol.2010.200Google Scholar
  21. 21.
    Dobkin, B.H.: Training and exercise to drive poststroke recovery. Nat. Clin. Pract. Neurol. 4(2), 76–85 (2008). DOI 10.1038/ncpneuro0709Google Scholar
  22. 22.
    Dobkin, B.H.: Progressive staging of pilot studies to improve phase III trials for motor interventions. Neurorehabil. Neural Repair 23(3), 197–206 (2009). DOI 10.1177/1545968309331863Google Scholar
  23. 23.
    Enzinger, C., Ropele, S., Fazekas, F., Loitfelder, M., Gorani, F., Seifert, T., Reiter, G., Neuper, C., Pfurtscheller, G., Müller-Putz, G.: Brain motor system function in a patient with complete spinal cord injury following extensive brain–computer interface training. Exp. Brain Res. 190(2), 215–223 (2008). DOI 10.1007/s00221-008-1465-yGoogle Scholar
  24. 24.
    Feigin, V.L., Lawes, C.M., Bennett, D.A., Barker-Collo, S.L., Parag, V.: Worldwide stroke incidence and early case fatality reported in 56 population-based studies: a systematic review. Lancet Neurol. 8(4), 355–369 (2009). DOI 10.1016/S1474-4422(09)70025-0Google Scholar
  25. 25.
    Francisco, G., Chae, J., Chawla, H., Kirshblum, S., Zorowitz, R., Lewis, G., Pang, S.: Electromyogram-triggered neuromuscular stimulation for improving the arm function of acute stroke survivors: a randomized pilot study. Arch. Phys. Med. Rehabil. 79(5), 570–575 (1998). DOI S0003-9993(98)90074-0Google Scholar
  26. 26.
    Gan, L.S., Prochazka, A.: Properties of the stimulus router system, a novel neural prosthesis. IEEE Trans. Biomed. Eng. 57(2), 450–459 (2010). DOI 10.1109/TBME.2009.2031427Google Scholar
  27. 27.
    Gollee, H., Volosyak, I., McLachlan, A.J., Hunt, K.J., Graser, A.: An SSVEP-based brain–computer interface for the control of functional electrical stimulation. IEEE Trans. Biomed. Eng. 57(8), 1847–1855 (2010). DOI 10.1109/TBME.2010.2043432Google Scholar
  28. 28.
    Gomez-Rodriguez, M., Peters, J., Hill, J., Scholkopf, B., Gharabaghi, A., Grosse-Wentrup, M.: Closing the sensorimotor loop: haptic feedback facilitates decoding of motor imagery. J. Neural Eng. 8(3), 036005 v. DOI S1741-2560(11)65262-2Google Scholar
  29. 29.
    Gordon, T., Mao, J.: Muscle atrophy and procedures for training after spinal cord injury. Phys. Ther. 74(1), 50–60 (1994)Google Scholar
  30. 30.
    Gu, Y., Dremstrup, K., Farina, D.: Single-trial discrimination of type and speed of wrist movements from EEG recordings. Clin. Neurophysiol. 120(8), 1596–1600 (2009b). DOI S1388-2457(09)00343-5Google Scholar
  31. 31.
    Halder, S., Agorastos, D., Veit, R., Hammer, E.M., Lee, S., Varkuti, B., Bogdan, M., Rosenstiel, W., Birbaumer, N., Kubler, A.: Neural mechanisms of brain–computer interface control. Neuroimage 55(4), 1779–1790 (2011). DOI 10.1016/j.neuroimage.2011.01.021Google Scholar
  32. 32.
    Hart, R.L., Kilgore, K.L., Peckham, P.H.: A comparison between control methods for implanted FES hand-grasp systems. IEEE Trans. Rehabil. Eng. 6(2), 208–218 (1998)Google Scholar
  33. 33.
    Hentz, V.R., Leclercq, C.: (eds.) Surgical Rehabilitation of the Upper Limb in Tetraplegia. W.B. Saunders, London, Edingburgh, New York (2002)Google Scholar
  34. 34.
    Hoffman, L.R., Field-Fote, E.C.: Functional and corticomotor changes in individuals with tetraplegia following unimanual or bimanual massed practice training with somatosensory stimulation: a pilot study. J. Neurol. Phys. Ther. 34(4), 193–201 (2010). DOI 10.1097/NPT.0b013e3181fbe692Google Scholar
  35. 35.
    Kapadia, N.M., Zivanovic, V., Furlan, J.C., Craven, B.C., McGillivray, C., Popovic, M.R.: Functional electrical stimulation therapy for grasping in traumatic incomplete spinal cord injury: randomized control trial. Artif. Organs 35(3), 212–216 (2011). DOI 10.1111/j.1525-1594.2011.01216.xGoogle Scholar
  36. 36.
    Keith, M.W., Hoyen, H.: Indications and future directions for upper limb neuroprostheses in tetraplegic patients: a review. Hand Clin. 18(3), 519–528, viii (2002)Google Scholar
  37. 37.
    Kern, H., Carraro, U., Adami, N., Hofer, C., Loefler, S., Vogelauer, M., Mayr, W., Rupp, R., Zampieri, S.: One year of home-based daily FES in complete lower motor neuron paraplegia: recovery of tetanic contractility drives the structural improvements of denervated muscle. Neurol Res. 32(1), 5–12 (2010a). DOI 10.1179/174313209X385644Google Scholar
  38. 38.
    Kern, H., Carraro, U., Adami, N., Hofer, C., Loefler, S., Vogelauer, M., Mayr, W., Rupp, R., Zampieri, S.: One year of home-based daily FES in complete lower motor neuron paraplegia: recovery of tetanic contractility drives the structural improvements of denervated muscle. Neurol. Res. 32(1), 5–12 (2010b). DOI 10.1179/174313209X385644Google Scholar
  39. 39.
    Kilgore, K.L., Hoyen, H.A., Bryden, A.M., Hart, R.L., Keith, M.W., Peckham, P.H.: An implanted upper-extremity neuroprosthesis using myoelectric control. J. Hand Surg. Am. 33(4), 539–550 (2008). DOI S0363-5023(08)00011-7Google Scholar
  40. 40.
    Kilgore, K.L., Peckham, P.H., Keith, M.W., Montague, F.W., Hart, R.L., Gazdik, M.M., Bryden, A.M., Snyder, S.A., Stage, T.G.: Durability of implanted electrodes and leads in an upper-limb neuroprosthesis. J. Rehabil. Res. Dev. 40(6), 457–468 (2003)Google Scholar
  41. 41.
    Kilgore, K.L., Scherer, M., Bobblitt, R., Dettloff, J., Dombrowski, D.M., Godbold, N., Jatich, J.W., Morris, R., Penko, J.S., Schremp, E.S., Cash, L.A.: Neuroprosthesis consumers’ forum: consumer priorities for research directions. J. Rehabil. Res. Dev. 38(6), 655–660 (2001)Google Scholar
  42. 42.
    Kimberley, T.J., Lewis, S.M., Auerbach, E.J., Dorsey, L.L., Lojovich, J.M., Carey, J.R.: Electrical stimulation driving functional improvements and cortical changes in subjects with stroke. Exp. Brain Res. 154(4), 450–460 (2004). DOI 10.1007/s00221-003-1695-yGoogle Scholar
  43. 43.
    King, T.I., II: The effect of neuromuscular electrical stimulation in reducing tone. Am. J. Occup. Ther. 50(1), 62–64 (1996)Google Scholar
  44. 44.
    Kwon, B.K., Okon, E.B., Plunet, W., Baptiste, D., Fouad, K., Hillyer, J., Weaver, L.C., Fehlings, M.G., Tetzlaff, W.: A systematic review of directly applied biologic therapies for acute spinal cord injury. J. Neurotrauma 28(8), 1589–1610 (2011). DOI 10.1089/neu.2009.1150Google Scholar
  45. 45.
    Kwon, B.K., Sekhon, L.H., Fehlings, M.G.: Emerging repair, regeneration, and translational research advances for spinal cord injury. Spine 35(21 Suppl), S263–S270 (2010). DOI 10.1097/BRS.0b013e3181f3286dGoogle Scholar
  46. 46.
    Langhorne, P., Coupar, F., Pollock, A.: Motor recovery after stroke: a systematic review. Lancet Neurol. 8(8), 741–754 (2009). DOI 10.1016/S1474-4422(09)70150-4Google Scholar
  47. 47.
    Lauer, R.T., Peckham, P.H., Kilgore, K.L., Heetderks, W.J.: Applications of cortical signals to neuroprosthetic control: a critical review. IEEE Trans. Rehabil. Eng. 8(2), 205–208 (2000)Google Scholar
  48. 48.
    Lo, A.C., Guarino, P.D., Richards, L.G., Haselkorn, J.K., Wittenberg, G.F., Federman, D.G., Ringer, R.J., Wagner, T.H., Krebs, H.I., Volpe, B.T., Bever, C.T., Jr., Bravata, D.M., Duncan, P.W., Corn, B.H., Maffucci, A.D., Nadeau, S.E., Conroy, S.S., Powell, J.M., Huang, G.D., Peduzzi, P.: Robot-assisted therapy for long-term upper-limb impairment after stroke. New England J. Med. 362(19), 1772–1783 (2010). DOI 10.1056/NEJMoa0911341Google Scholar
  49. 49.
    Loeb, G.E., Davoodi, R.: The functional reanimation of paralyzed limbs. IEEE Eng. Med. Biol. Mag. 24(5), 45–51 (2005)Google Scholar
  50. 50.
    Merians, A.S., Poizner, H., Boian, R., Burdea, G., Adamovich, S.: Sensorimotor training in a virtual reality environment: does it improve functional recovery poststroke? Neurorehabil. Neural Repair 20(2), 252–267 (2006). DOI 10.1177/1545968306286914Google Scholar
  51. 51.
    Moss, C.W., Kilgore, K.L., Peckham, P.H.: A novel command signal for motor neuroprosthetic control. Neurorehabil. Neural Repair.25(9), 847–54 (2011). DOI 1545968311410067Google Scholar
  52. 52.
    Müller-Putz, G.R., Scherer, R., Pfurtscheller, G., Neuper, C.: Temporal coding of brain patterns for direct limb control in humans. Front. Neurosci. 4, 34 (2010). DOI 10.3389/fnins.2010.00034Google Scholar
  53. 53.
    Müller-Putz, G.R., Scherer, R., Pfurtscheller, G., Rupp, R.: EEG-based neuroprosthesis control: a step towards clinical practice. Neurosci. Lett. 382(1-2), 169–174 (2005). DOI S0304-3940(05)00300-9Google Scholar
  54. 54.
    Müller-Putz, G.R., Scherer, R., Pfurtscheller, G., Rupp, R.: Brain–computer interfaces for control of neuroprostheses: from synchronous to asynchronous mode of operation. Biomed. Tech. (Berl.) 51(2), 57–63 (2006). DOI 10.1515/BMT.2006.011Google Scholar
  55. 55.
    Müller-Putz, G.R., Zimmermann, D., Graimann, B., Nestinger, K., Korisek, G., Pfurtscheller, G.: Event-related beta EEG-changes during passive and attempted foot movements in paraplegic patients. Brain Res. 1137(1), 84–91 (2007). DOI S0006-8993(06)03605-5Google Scholar
  56. 56.
    Müller, G.R., Neuper, C., Rupp, R., Keinrath, C., Gerner, H.J., Pfurtscheller, G.: Event-related beta EEG changes during wrist movements induced by functional electrical stimulation of forearm muscles in man. Neurosci. Lett. 340(2), 143–147 (2003). DOI S0304394003000193Google Scholar
  57. 57.
    Mulcahey, M.J., Smith, B.T., Betz, R.R.: Evaluation of the lower motor neuron integrity of upper extremity muscles in high level spinal cord injury. Spinal Cord 37(8), 585–591 (1999)Google Scholar
  58. 58.
    Muralidharan, A., Chae, J., Taylor, D.M.: Extracting Attempted Hand Movements from EEGs in People with Complete Hand Paralysis Following Stroke. Front. Neurosci. 5, 39 (2011). DOI 10.3389/fnins.2011.00039Google Scholar
  59. 59.
    Nagaoka, T., Sakatani, K., Awano, T., Yokose, N., Hoshino, T., Murata, Y., Katayama, Y., Ishikawa, A., Eda, H.: Development of a new rehabilitation system based on a brain–computer interface using near-infrared spectroscopy. Adv. Exp. Med. Biol. 662, 497–503 (2010). DOI  10.1007/978-1-4419-1241-1_72 Google Scholar
  60. 60.
    Neumann, N., Hinterberger, T., Kaiser, J., Leins, U., Birbaumer, N., Kubler, A.: Automatic processing of self-regulation of slow cortical potentials: evidence from brain–computer communication in paralysed patients. Clin. Neurophysiol. 115(3), 628–635 (2004). DOI 10.1016/j.clinph.2003.10.030Google Scholar
  61. 61.
    Neuper, C., Scherer, R., Reiner, M., Pfurtscheller, G.: Imagery of motor actions: differential effects of kinesthetic and visual-motor mode of imagery in single-trial EEG. Brain Res. Cogn. Brain Res. 25(3), 668–677 (2005). DOI 10.1016/j.cogbrainres.2005.08.014Google Scholar
  62. 62.
    Nilsen, D.M., Gillen, G., Gordon, A.M.: Use of mental practice to improve upper-limb recovery after stroke: a systematic review. Am. J. Occup. Ther. 64(5), 695–708 (2010)Google Scholar
  63. 63.
    NSCISC.: The 2006 annual statistical report for the model spinal cord injury care systems. National SCI Statistical Center (2006)Google Scholar
  64. 64.
    Ortner, R., Allison, B.Z., Korisek, G., Gaggl, H., Pfurtscheller, G.: An SSVEP BCI to control a hand orthosis for persons with tetraplegia. IEEE Trans. Neural Syst. Rehabil. Eng. 19(1), 1–5 (2011). DOI 10.1109/TNSRE.2010.2076364Google Scholar
  65. 65.
    Ouzký M.: Towards concerted efforts for treating and curing spinal cord injury (2002), report of the Social, Health and Family Affairs Committee of the Council of Europe, Doc. 9401, available under (last access 3rd of July 2012)
  66. 66.
    Patil, P.G., Turner, D.A.: The development of brain-machine interface neuroprosthetic devices. Neurotherapeutics 5(1), 137–146 (2008). DOI 10.1016/j.nurt.2007.11.002Google Scholar
  67. 67.
    Peckham, P.H., Keith, M.W., Kilgore, K.L., Grill, J.H., Wuolle, K.S., Thrope, G.B., Gorman, P., Hobby, J., Mulcahey, M.J., Carroll, S., Hentz, V.R., Wiegner, A.: Efficacy of an implanted neuroprosthesis for restoring hand grasp in tetraplegia: a multicenter study. Arch. Phys. Med. Rehabil. 82(10), 1380–1388 (2001). DOI S0003-9993(01)45286-5Google Scholar
  68. 68.
    Pfurtscheller, G., Linortner, P., Winkler, R., Korisek, G., Müller-Putz, G.: Discrimination of motor imagery-induced EEG patterns in patients with complete spinal cord injury. Comput. Intell. Neurosci., Article ID 104180 (2009). DOI 10.1155/2009/104180Google Scholar
  69. 69.
    Pfurtscheller, G., Lopes da Silva, F.H.: Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin. Neurophysiol. 110(11), 1842–1857 (1999)Google Scholar
  70. 70.
    Pfurtscheller, G., Müller, G.R., Pfurtscheller, J., Gerner, H.J., Rupp, R.: ‘Thought’–control of functional electrical stimulation to restore hand grasp in a patient with tetraplegia. Neurosci. Lett. 351(1), 33–36 (2003a). DOI S0304394003009479Google Scholar
  71. 71.
    Pfurtscheller, G., Neuper, C., Muller, G.R., Obermaier, B., Krausz, G., Schlogl, A., Scherer, R., Graimann, B., Keinrath, C., Skliris, D., Wortz, M., Supp, G., Schrank, C.: Graz-BCI: state of the art and clinical applications. IEEE Trans. Neural Syst. Rehabil. Eng. 11(2), 177–180 (2003b). DOI 10.1109/TNSRE.2003.814454Google Scholar
  72. 72.
    Pichiorri, F., Cincotti, F., de Vico Fallani, F., Pisotta, I., Morone, G., Molinari, M., Mattia, D.: Towards a brain computer Interface-based rehabilitation: from bench to bedside.. 5th International BCI Conference Proceedings, Graz, Austria (2011a)Google Scholar
  73. 73.
    Pichiorri, F., De Vico Fallani, F., Cincotti, F., Babiloni, F., Molinari, M., Kleih, S.C., Neuper, C., Kubler, A., Mattia, D.: Sensorimotor rhythm-based brain–computer interface training: the impact on motor cortical responsiveness. J. Neural Eng. 8(2), 025020 (2011b). DOI S1741-2560(11)66162-9Google Scholar
  74. 74.
    Pomeroy, V.M., King, L., Pollock, A., Baily-Hallam, A., Langhorne, P.: Electrostimulation for promoting recovery of movement or functional ability after stroke. Systematic Review and Meta-Analysis Stroke. 2006; 37: 2441-2442. Cochrane Database Syst. Rev. (2), CD003241 (2006). DOI 10.1002/14651858.CD003241.pub2Google Scholar
  75. 75.
    Popovic, D., Stojanovic, A., Pjanovic, A., Radosavljevic, S., Popovic, M., Jovic, S., Vulovic, D.: Clinical evaluation of the bionic glove. Arch. Phys. Med. Rehabil. 80(3), 299–304 (1999). DOI S0003-9993(99)90141-7Google Scholar
  76. 76.
    Popovic, M.B., Popovic, D.B., Sinkjaer, T., Stefanovic, A., Schwirtlich, L.: Clinical evaluation of Functional Electrical Therapy in acute hemiplegic subjects. J. Rehabil. Res. Dev. 40(5), 443–453 (2003)Google Scholar
  77. 77.
    Popovic, M.R., Popovic, D.B., Keller, T.: Neuroprostheses for grasping. Neurol. Res. 24(5), 443–452 (2002a)Google Scholar
  78. 78.
    Popovic, M.R., Thrasher, T.A., Adams, M.E., Takes, V., Zivanovic, V., Tonack, M.I.: Functional electrical therapy: retraining grasping in spinal cord injury. Spinal Cord 44(3), 143–151 (2006). DOI 3101822Google Scholar
  79. 79.
    Powell, J., Pandyan, A.D., Granat, M., Cameron, M., Stott, D.J.: Electrical stimulation of wrist extensors in poststroke hemiplegia. Stroke 30(7), 1384–1389 (1999)Google Scholar
  80. 80.
    Prasad, G., Herman, P., Coyle, D., McDonough, S., Crosbie, J.: Applying a brain–computer interface to support motor imagery practice in people with stroke for upper limb recovery: a feasibility study. J. Neuroeng. Rehabil. 7, 60 (2010). DOI 1743-0003-7-60Google Scholar
  81. 81.
    Rocon, E., Gallego, J.A., Barrios, L., Victoria, A.R., Ibanez, J., Farina, D., Negro, F., Dideriksen, J.L., Conforto, S., D’Alessio, T., Severini, G., Belda-Lois, J.M., Popovic, L.Z., Grimaldi, G., Manto, M., Pons, J.L.: Multimodal BCI-mediated FES suppression of pathological tremor. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2010, 3337–3340 (2010). DOI 10.1109/IEMBS.2010.5627914Google Scholar
  82. 82.
    Rupp, R., Gerner, H.J.: Neuroprosthetics of the upper extremity–clinical application in spinal cord injury and challenges for the future. Acta. Neurochir. Suppl. 97(Pt 1), 419–426 (2007)Google Scholar
  83. 83.
    Rupp, R., Müller-Putz, G.R., Pfurtscheller, G., Gerner, H.J., Vossius, G.: Evaluation of control methods for grasp neuroprostheses based on residual movements, myoelectrical activity and cortical signals. Biomed. Tech. (Berl.) 53(Suppl. 1), 2 (2008)Google Scholar
  84. 84.
    Schill, O., Wiegand, R., Schmitz, B., Matthies, R., Eck, U., Pylatiuk, C., Reischl, M., Schulz, S., Rupp, R.: OrthoJacket: an active FES-hybrid orthosis for the paralysed upper extremity. Biomed. Tech. (Berl.) 56(1), 35–44 (2011). DOI 10.1515/BMT.2010.056Google Scholar
  85. 85.
    Smith, B., Peckham, P.H., Keith, M.W., Roscoe, D.D.: An externally powered, multichannel, implantable stimulator for versatile control of paralyzed muscle. IEEE Trans. Biomed. Eng. 34(7), 499–508 (1987)Google Scholar
  86. 86.
    Snoek, G.J., MJ, I.J., Hermens, H.J., Maxwell, D., Biering-Sorensen, F.: Survey of the needs of patients with spinal cord injury: impact and priority for improvement in hand function in tetraplegics. Spinal Cord 42(9), 526–532 (2004). DOI 10.1038/ Scholar
  87. 87.
    Stefan, K., Kunesch, E., Cohen, L.G., Benecke, R., Classen, J.: Induction of plasticity in the human motor cortex by paired associative stimulation. Brain 123 (Pt 3), 572–584 (2000)Google Scholar
  88. 88.
    Tator, C.H.: Review of treatment trials in human spinal cord injury: issues, difficulties, and recommendations. Neurosurgery 59(5), 957–982; discussion 982–957 (2006). DOI 10.1227/01.NEU.0000245591.16087.89Google Scholar
  89. 89.
    Tavella, M., Leeb, R., Rupp, R., Millan del, J.R.: Towards natural non-invasive hand neuroprostheses for daily living. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2010, 126–129 (2010). DOI 10.1109/IEMBS.2010.5627178Google Scholar
  90. 90.
    Thrasher, T.A., Popovic, M.R.: Functional electrical stimulation of walking: function, exercise and rehabilitation. Ann. Readapt. Med. Phys. 51(6), 452–460 (2008). DOI S0168-6054(08)00092-5Google Scholar
  91. 91.
    Thrasher, T.A., Zivanovic, V., McIlroy, W., Popovic, M.R.: Rehabilitation of reaching and grasping function in severe hemiplegic patients using functional electrical stimulation therapy. Neurorehabil. Neural Repair 22(6), 706–714 (2008). DOI 1545968308317436Google Scholar
  92. 92.
    Thuret, S., Moon, L.D., Gage, F.H.: Therapeutic interventions after spinal cord injury. Nat. Rev. Neurosci. 7(8), 628–643 (2006). DOI 10.1038/nrn1955Google Scholar
  93. 93.
    van den Berg, M.E., Castellote, J.M., Mahillo-Fernandez, I., de Pedro-Cuesta, J.: Incidence of spinal cord injury worldwide: a systematic review. Neuroepidemiology 34(3), 184–192; discussion 192 (2010). DOI 000279335Google Scholar
  94. 94.
    van den Honert, C., Mortimer, J.T.: The response of the myelinated nerve fiber to short duration biphasic stimulating currents. Ann. Biomed. Eng. 7(2), 117–125 (1979)Google Scholar
  95. 95.
    von Lewinski, F., Hofer, S., Kaus, J., Merboldt, K.D., Rothkegel, H., Schweizer, R., Liebetanz, D., Frahm, J., Paulus, W.: Efficacy of EMG-triggered electrical arm stimulation in chronic hemiparetic stroke patients. Restor. Neurol. Neurosci. 27(3), 189–197 (2009). DOI W57810637650U3X1Google Scholar
  96. 96.
    Wang, W., Collinger, J.L., Perez, M.A., Tyler-Kabara, E.C., Cohen, L.G., Birbaumer, N., Brose, S.W., Schwartz, A.B., Boninger, M.L., Weber, D.J.: Neural interface technology for rehabilitation: exploiting and promoting neuroplasticity. Phys. Med. Rehabil. Clin. N. Am. 21(1), 157–178 (2010). DOI S1047-9651(09)00061-8Google Scholar
  97. 97.
    Warlow, C., van Gijn, J., Dennis, M., Wardlaw, J., Bamford, J., Sandercock, P., Rinkel, G., Langhorne, P., Sudlow, C., Rothwell, P.: Stroke: Practical management. 3rd edn. Blackwell, Oxford (2008)Google Scholar
  98. 98.
    Wheeler, C.A., Peckham, P.H.: Wireless wearable controller for upper-limb neuroprosthesis. J. Rehabil. Res. Dev. 46(2), 243–256 (2009)Google Scholar
  99. 99.
    Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain–computer interfaces for communication and control. Clin. Neurophysiol. 113(6), 767–791 (2002). DOI S1388245702000573Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Clinical Neurophysiology, Neuroelectrical Imaging and BCI LabFondazione Santa Lucia, IRCCSRomeItaly
  2. 2.Spinal Cord Injury UnitFondazione Santa Lucia, IRCCSRomeItaly
  3. 3.Spinal Cord Injury CenterHeidelberg University HospitalHeidelbergGermany

Personalised recommendations