Skip to main content

Introduction to Devices, Applications and Users: Towards Practical BCIs Based on Shared Control Techniques

  • Chapter
  • First Online:
  • 2909 Accesses

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

Brain–Computer Interface (BCI) research is a currently very active and fast growing field, in particular in bringing the BCI out of the lab and moving from prototypes to real world applications such as brain-controlled writing applications, wheelchairs, and games. The research focus has been widened and BCIs are no longer only useful for patients, but also for healthy users, especially for BCI controlled or supported computer games. In this chapter, we focus on current devices and application scenarios for various user groups. Up to now, typical applications require a very good and precise control channel to achieve performances comparable to users without a BCI. However, current day BCIs offer low throughput information and are insufficient for the full dexterous control of such complex applications. Techniques like shared control can enhance the interaction to a similar level as without a BCI. With shared control the user is giving high-level commands on a low pace (e.g. directions of a wheelchair) and the system is executing fast and precise low-level interactions (e.g. obstacle avoidance). Furthermore, the performance of the applications can be improved by novel hybrid BCIs architectures, which are a synergetic combination of a BCI with other residual input channels. All together, modern human–computer interaction techniques combined with applications based on shared control principles which are controlled by a hybrid BCI are able to provide powerful interactions and applications for healthy and disabled users.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Allison, B., Graimann, B., Gräser, A.: Why use a BCI if you are healthy? In: Proceedings of BRAINPLAY 2007 ”Playing with your brain”, pp. 7–11 (2007a)

    Google Scholar 

  2. Allison, B.Z., Wolpaw, E.W., Wolpaw, J.R.: Brain–computer interface systems: Progress and prospects. Expert Rev. Med. Devices 4(4), 463–474 (2007b)

    Google Scholar 

  3. Allison, B., Brunner, C., Kaiser, V., Müller-Putz, G., Neuper, C., Pfurtscheller, G.: Toward a hybrid brain–computer interface based on imagined movement and visual attention. J. Neural Eng. 7(2), 026007 (2010)

    Google Scholar 

  4. Ang, K., Guan, C., Chua, K., Ang, B., Kuah, C., Wang, C., Phua, K., Chin, Z., Zhang, H.: A large clinical study on the ability of stroke patients to use an EEG-based motor imagery brain–computer interface. Clin. EEG Neurosci. 42(4), 253–258 (2011)

    Google Scholar 

  5. Bayliss, J.D.: Use of the evoked potential P3 component for control in a virtual apartment. IEEE Trans. Neural Syst. Rehabil. Eng. 11(2), 113–116 (2003)

    Google Scholar 

  6. Bell, C.J., Shenoy, P., Chalodhorn, R., Rao, R.P.N.: Control of a humanoid robot by a noninvasive brain–computer interface in humans. J. Neural Eng. 5, 214–220 (2008)

    Google Scholar 

  7. Bensch, M., Karim, A.A., Mellinger, J., Hinterberger, T., Tangermann, M., Bogda, M., Rosenstiel, W., Birbaumer, N.: Nessi: an EEG-controlled web browser for severely paralyzed patients. Comput. Intell. Neurosci. 2007, 71,863 (2007)

    Google Scholar 

  8. Biasiucci, A., Chavarriaga, R., Hamner, B., Leeb, R., Pichiorri, F., De Vico Fallani, F., Mattia, D., Millán JdR.: Combining discriminant and topographic information in BCI: Preliminary results on stroke patients. In: 5th International IEEE EMBS Conference on Neural Engineering. (2011)

    Google Scholar 

  9. Birbaumer, N., Cohen, L.G.: Brain-computer interfaces: communication and restoration of movement in paralysis. J. Physiol. 579, 621–636 (2007)

    Google Scholar 

  10. Birbaumer, N., Ghanayim, N., Hinterberger, T., Iversen, I., Kotchoubey, B., Kübler, A., Perelmouter, J., Taub, E., Flor, H.: A spelling device for the paralysed. Nature 398(6725), 297–298 (1999)

    Google Scholar 

  11. Blankertz, B., Dornhege, G., Schäfer, C., Krepki, R., Kohlmorgen, J., Müller, K., Kunzmann, V., Losch, F., Curio, G.: Boosting bit rates and error detection for the classification of fast-paced motor commands based on single-trial EEG analysis. IEEE Trans. Neural Syst. Rehabil. Eng. 11(2), 127–131 (2003)

    Google Scholar 

  12. Bollon, J.M., Chavarriaga, R., Millán JdR., Bessière, P.: EEG error-related potentials detection with a Bayesian filter. In: Proc. 4th International IEEE/EMBS Conference on Neural Engineering NER ’09, pp. 702–705. (2009)

    Google Scholar 

  13. Borenstein, J., Koren, Y.: The vector field histogram – fast obstacle avoidance for mobile robots. IEEE Trans. Rob. Autom. 7(3), 278–288 (1991)

    Google Scholar 

  14. Brunner, C., BZAllison, Krusienski, D., Kaiser, V., Müller-Putz, G., Pfurtscheller, G., Neuper, C.: Improved signal processing approaches in an offline simulation of a hybrid brain–computer interface. J. Neurosci. Methods 188(1), 165–173 (2010)

    Google Scholar 

  15. Buch, E., Weber, C., Cohen, L.G., Braun, C., Dimyan, M.A., Ard, T., Mellinger, J., Caria, A., Soekadar, S., Fourkas, A., Birbaumer, N.: Think to move: a neuromagnetic brain–computer interface (BCI) system for chronic stroke. Stroke 39, 910–917 (2008)

    Google Scholar 

  16. Carlson, T., Demiris, Y.: Human-wheelchair collaboration through prediction of intention and adaptive assistance. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Pasadena, CA, pp. 3926–3931 (2008)

    Google Scholar 

  17. Carlson, T., Monnard, G., Millán, J.: Vision-based shared control for a BCI wheelchair. In: Tools for Brain Computer Interaction Workshop (TOBI Workshop 2), Rome, Italy (2010)

    Google Scholar 

  18. Chavarriaga, R., Millán, J.: Learning from EEG error-related potentials in noninvasive brain–computer interfaces. IEEE Trans. Neural Syst. Rehabil. Eng. 18(4), 381–388 (2010)

    Google Scholar 

  19. Chavarriaga, R., Biasiucci, A., Förster, K., Roggen, D., Tröster, G., Millán, JdR.: Adaptation of Hybrid Human-Computer Interaction Systems using EEG Error-Related Potentials. In: 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC’10) (2010)

    Google Scholar 

  20. Cincotti, F., Mattia, D., Aloise, F., Bufalari, S., Schalk, G., Oriolo, G., Cherubini, A., Marciani, M.G., Babiloni, F.: Non-invasive brain–computer interface system: towards its application as assistive technology. Brain Res. Bull. 75, 796–803 (2008)

    Google Scholar 

  21. Danoczy, M., Fazli, S., Grozea, C., Müller, K., Popescu, F.: Brain2robot: A grasping robot arm controlled by gaze and asynchronous EEG BCI. In: Proc. 4th Int. BCI Workshop & Train. Course (2008)

    Google Scholar 

  22. Donchin, E., Spencer, K.M., Wijesinghe, R.: The mental prosthesis: assessing the speed of a P300-based brain–computer interface. IEEE Trans. Neural Syst. Rehabil. Eng. 8, 174–179, (2000)

    Google Scholar 

  23. Falkenstein, M., Hoormann, J., Christ, S., Hohnsbein, J.: ERP components on reaction errors and their functional significance: A tutorial. Biol. Psychol. 51(2-3), 87–107 (2000)

    Google Scholar 

  24. Ferrez, P.W., Millán, J.: You are wrong!—Automatic detection of interaction errors from brain waves. In: Proceedings of the 19th International Joint Conference on Artificial Intelligence, Edinburgh, UK (2005)

    Google Scholar 

  25. Ferrez, P.W., Millán, J.: Error-related EEG potentials generated during simulated brain–computer interaction. IEEE Trans. Biomed. Eng. 55, 923–929 (2008a)

    Google Scholar 

  26. Ferrez, P.W., Millán, J.: Simultaneous real-time detection of motor imagery and error-related potentials for improved BCI accuracy. In: Proc 4th Intl. Brain–Computer Interface Workshop and Training Course, Graz, Austria (2008b)

    Google Scholar 

  27. Finke, A., Lenhardt, A., Ritter, H.: The MindGame: A P300-based brain–computer interface game. Neural Netw. 22, 1329–1333 (2009)

    Google Scholar 

  28. Flemisch, O., Adams, A., Conway, S., Goodrich, K., Palmer, M., Schutte, P.: The H-Metaphor as a guideline for vehicle automation and interaction. Tech. Rep. NASA/TM–2003-212672, NASA (2003)

    Google Scholar 

  29. Förster, K., Biasiucci, A., Chavarriaga, R., Millán JdR., Roggen, D., Tröster, G.: On the use of brain decoded signals for online user adaptive gesture recognition systems. In: Pervasive 2010 The Eighth International Conference on Pervasive Computing, (2010)

    Google Scholar 

  30. Galán, F., Nuttin, M., Lew, E., Ferrez, P.W., Vanacker, G., Philips, J., Millán, JdR.: A brain-actuated wheelchair: Asynchronous and non-invasive brain–computer interfaces for continuous control of robots. Clin. Neurophysiol. 119(9), 2159–2169 (2008)

    Google Scholar 

  31. Gangadhar, G., Chavarriaga, R., Millán, JdR.: Fast recognition of anticipation related potentials. IEEE Tran. Biomed. Eng. 56(4), 1257–1260 (2009)

    Google Scholar 

  32. Gao, X., Xu, D., Cheng, M., Gao, S.: A BCI-based environmental controller for the motion-disabled. IEEE Trans. Neural Syst. Rehabil. Eng. 11, 137–140 (2003)

    Google Scholar 

  33. George, L., Lécuyer, A.: An overview of research on ”passive” brain–computer interfaces for implicit human–computer interaction. In: International Conference on Applied Bionics and Biomechanics (ICABB), Venice, Italy (2010)

    Google Scholar 

  34. Graimann, B., Allison, B., Mandel, C., Lüth, T., Valbuena, D., Gräser, A.: Non-invasive brain–computer interfaces for semi-autonomous assistive devices. In: Schuster, A. (ed.) Robust intelligent systems, pp.  113–137. Springer, London (2008)

    Google Scholar 

  35. Guger, C., Krausz, G., Edlinger, G.: Brain–computer interface control with dry EEG electrodes. In: Proceedings of the 5th Int. Brain–Computer Interface Conference, Verlag der Technischen Universität Graz, Graz, Austria, pp. 316–320 (2011)

    Google Scholar 

  36. Hamadicharef, B., Zhang, H., Guan, C., Wang, C., Phua, K., Tee, K., Ang, K.: Learning EEG-based spectral-spatial patterns for attention level measurement. In: Proc. 2009 IEEE Int. Symp. Circuits Syst. (2009)

    Google Scholar 

  37. Holzner, C., Guger, C., Edlinger, G., Gronegress, C., Slater, M.: Virtual smart home controlled by thoughts. In: Enabling Technologies: Infrastructures for Collaborative Enterprises, 2009. W ETICE ’09. 18th IEEE International Workshops on, pp. 236–239 (2009)

    Google Scholar 

  38. Ijzermann, M., Stoffers, T., Klatte, M., Snoeck, G., Vorsteveld, J., Nathan, R.: The NESS handmaster orthosis: Restoration of hand function in C5 and stroke patients by means of electrical stimulation. J. Rehab. Science 9, 86–89 (1996)

    Google Scholar 

  39. Iturrate, I., Antelis, J., Kubler, A., Minguez, J.: A noninvasive brain-actuated wheelchair based on a p300 neurophysiological protocol and automated navigation. IEEE Trans. Robot. 25(3), 614–627 (2009)

    Google Scholar 

  40. Jeannerod, M.: Neural simulation of action: a unifying mechanism for motor cognition. NeuroImage 14, S103–S109 (2001)

    Google Scholar 

  41. Karim, A.A., Hinterberger, T., Richter, J., Mellinger, J., Neumann, N., Flor, H., Kübler, A., Birbaumer, N.: Neural internet: Web surfing with brain potentials for the completely paralyzed. Neurorehabil. Neural Repair 20(4), 508–515 (2006)

    Google Scholar 

  42. Keith, M.W., Hoyen, H.: Indications and future directions for upper limb neuroprostheses in tetraplegic patients: a review. Hand Clin. 18(3), 519–528, viii (2002)

    Google Scholar 

  43. Kohlmorgen, J., Dornhege, G., Braun, M.L., Blankertz, B., Müller, K., Curio, G., Hagemann, K., Bruns, A., Schrauf, M., Kincses, W.: Improving human performance in a real operating environment through real-time mental workload detection. In: Dornhege, G., Millán, J., Hinterberger, T., McFarland, D., Müller, K. (eds.) Toward Brain–Computer Interfacing, pp. 409–422. MIT press, Cambridge, MA (2007)

    Google Scholar 

  44. Krepki, R., Blankertz, B., Curio, G., Müller, K.R.: The Berlin Brain-Computer Interface (BBCI)—towards a new communication channel for online control in gaming applications. Multimed. Tools Appl. 33, 73–90 (2007)

    Google Scholar 

  45. Kübler, A., Neumann, N., Wilhelm, B., Hinterberger, T., Birbaumer, N.: Predictability of brain–computer communication. J. Psychophysiol. 18(2-3), 121–129 (2004)

    Google Scholar 

  46. Kuebler, A., Nijboer, F., Mellinger, J., Vaughan, T.M., Pawelzik, H., Schalk, G., McFarland, D.J., Birbaumer, N., Wolpaw, J.R.: Patients with als can use sensorimotor rhythms to operate a brain–computer interface. Neurology 64(10), 1775–1777 (2005)

    Google Scholar 

  47. Lalor, E., Kelly, S., Finucane, C., Burke, R., Smith, R., Reilly, R.B., McDarby, G.: Steady-state vep-based brain computer interface control in an immersive 3-d gaming environment. EURASIP J Appl. Signal Process. 19, 3156–3164 (2005)

    Google Scholar 

  48. Lécuyer, A., Lotte, F., Reilly, R., Leeb, R., Hirose, M., Slater, M.: Brain–computer interfaces, virtual reality, and videogames. Computer 41(10), 66–72 (2008)

    Google Scholar 

  49. Leeb, R., Keinrath, C., Friedman, D., Guger, C., Scherer, R., Neuper, C., Garau, M., Antley, A., Steed, A., Slater, M., Pfurtscheller, G.: Walking by thinking: the brainwaves are crucial, not the muscles! Presence (Camb.) 15, 500–514 (2006)

    Google Scholar 

  50. Leeb, R., Friedman, D., Müller-Putz, G.R., Scherer, R., Slater, M., Pfurtscheller, G.: Self-paced (asynchronous) BCI control of a wheelchair in virtual environments: a case study with a tetraplegics. Comput. Intell. Neurosci. 2007, 79,642 (2007a)

    Google Scholar 

  51. Leeb, R., Lee, F., Keinrath, C., Scherer, R., Bischof, H., Pfurtscheller, G.: Brain-computer communication: motivation, aim and impact of exploring a virtual apartment. IEEE Trans. Neural Syst. Rehabil. Eng. 15, 473–482 (2007b)

    Google Scholar 

  52. Leeb, R., Gubler, M., Tavella, M., Miller, H., Millán, J.: On the road to a neuroprosthetic hand: A novel hand grasp orthosis based on functional electrical stimulation. In: Proc. Annual International Conference of the IEEE Engineering in Medicine and Biology Society EMBC 2010, pp. 146–149 (2010)

    Google Scholar 

  53. Leeb, R., Sagha, H., Chavarriaga, R., Millán, J.: A hybrid brain–computer interface based on the fusion of electroencephalographic and electromyographic activities. J. Neural Eng. 8(2), 025,011 (2011)

    Google Scholar 

  54. Lim, C.G., Lee, T.S., Guan, C., Sheng Fung, D.S., Cheung, Y.B., Teng, S.S.W., Zhang, H., Krishnan, K.R.: Effectiveness of a brain–computer interface based programme for the treatment of adhd: A pilot study. Psychopharmacol. Bull. 43(1), 73–82 (2010)

    Google Scholar 

  55. Lotte, F.: Brain–computer interfaces for 3D games: Hype or hope? In: Foundations of Digital Games, ACM New York, USA, 325–327 (2011)

    Google Scholar 

  56. Lotte, F., Langhenhove, A.V., Lamarche, F., Ernest, T., Renard, Y., Arnaldi, B., Lécuyer, A.: Exploring large virtual environments by thoughts using a brain–computer interface based on motor imagery and high-level commands. Presence (Camb.) 19(1), 54–70 (2010)

    Google Scholar 

  57. Mangold, S., Keller, T., Curt, A., Dietz, V.: Transcutaneous functional electrical stimulation for grasping in subjects with cervical spinal cord injury. Spinal Cord 43(1), 1–13 (2005)

    Google Scholar 

  58. Marcel, S., Millán, J.: Person authentication using brainwaves (EEG) and maximum a posteriori model adaptation. IEEE Trans. Pattern Anal. Mach. Intell. 29, 743–748 (2007)

    Google Scholar 

  59. Mason, S.G., Bashashati, A., Fatourechi, M., Navarro, K.F., Birch, G.E.: A comprehensive survey of brain interface technology designs. Ann. Biomed. Eng. 35(2), 137–169 (2007)

    Google Scholar 

  60. Menon, C., de Negueruela, C., Millán, J., Tonet, O., Carpi, F., Broschart, M., Ferrez, P., Buttfield, A., Tecchio, F., Sepulveda, F., Citi, L., Laschi, C., Tombini, M., Dario, P., Rossini, P.M., de Rossi, D.: Prospects of brain-machine interfaces for space system control. Acta Astronaut. 64, 448–456 (2009)

    Google Scholar 

  61. Millán, J.: Adaptive brain interfaces. Commun. ACM 46(3), 74–80 (2003)

    Google Scholar 

  62. Millán, J., Renkens, F., Mouriño, J., Gerstner, W.: Brain-actuated interaction. Artif. Intell. 159, 241–259 (2004a)

    Google Scholar 

  63. Millán, J., Renkens, F., Mouriño, J., Gerstner, W.: Noninvasive brain-actuated control of a mobile robot by human EEG. IEEE Trans. Biomed. Eng. 51(6), 1026–1033 (2004b)

    Google Scholar 

  64. Millán, J., Ferrez, P.W., Galán, F., Lew, E., Chavarriaga, R.: Non-invasive brain-machine interaction. Intern. J. Pattern Recognit. Artif. Intell. 22(5), 959–972 (2008)

    Google Scholar 

  65. Millán, J., Rupp, R., Müller-Putz, G., Murray-Smith, R., Giugliemma, C., Tangermann, M., Vidaurre, C., Cincotti, F., Kübler, A., Leeb, R., Neuper, C., Müller, K., Mattia, D.: Combining brain–computer interfaces and assistive technologies: State-of-the-art and challenges. Front. Neurosc. 4, 161 (2010)

    Google Scholar 

  66. Millán JdR., Galán, F., Vanhooydonck, D., Lew, E., Philips, J., Nuttin, M.: Asynchronous non-invasive brain-actuated control of an intelligent wheelchair. In: Proc. 31st Annual Int. Conf. IEEE Eng. Med. Biol. Soc., pp 3361–3364 (2009)

    Google Scholar 

  67. Mugler, M.E., Bensch, Halder, S., Rosenstiel, W., Bogdan, M., Birbaumer, N., Kübler, A.: Control of an internet browser using the P300 event-related potential. Int. J. Bioelectromagn. 10, 56–63 (2008)

    Google Scholar 

  68. Müller, K., Tangermann, M., Dornhege, G., Krauledat, M., Curio, G., Blankertz, B.: Machine learning for real-time single-trial EEG-analysis: From brain–computer interfacing to mental state monitoring. J. Neurosci. Methods 167, 82–90 (2008)

    Google Scholar 

  69. Müller, K.R., Blankertz, B.: Toward noninvasive brain–computer interfaces. IEEE Signal Proc. Mag. 23, 125–128 (2006)

    Google Scholar 

  70. Müller-Putz, G., Scherer, R., Pfurtscheller, G., Rupp, R.: EEG-based neuroprosthesis control: A step towards clinical practice. Neurosci. Lett. 382, 169–174 (2005)

    Google Scholar 

  71. Müller-Putz, G., Scherer, R., Pfurtscheller, G., Neuper, C.: Temporal coding of brain patterns for direct limb control in humans. Front. Neuroprosthetics 4, 00034 (2010)

    Google Scholar 

  72. Müller-Putz, G.R., Pfurtscheller, G.: Control of an electrical prosthesis with an SSVEP-based BCI. IEEE Trans. Biomed. Eng. 55, 361–364 (2008)

    Google Scholar 

  73. Müller-Putz, G.R., Scherer, R., Pfurtscheller, G.: Control of a two-axis artificial limb by means of a pulse width modulated brain switch. In: European Conference for the Advancement of Assistive Technology (2007)

    Google Scholar 

  74. Nijboer, F., Sellers, E.W., Mellinger, J., Jordan, M.A., Matuz, T., Furdea, A., Halder, S., Mochty, U., Krusienski, D.J., Vaughan, T.M., Wolpaw, J.R., Birbaumer, N., Kübler, A.: A P300-based brain–computer interface for people with amyotrophic lateral sclerosis. Clin. Neurophysiol. 119(8), 1909–1916 (2008)

    Google Scholar 

  75. Nijholt, A.: BCI for games: A ‘state of the art’ survey. In: Proc. 7th Int. Conf. Entertain. Comp. (ICEC ’08), pp. 225–228 (2009)

    Google Scholar 

  76. Nijholt, A., Tan, D., Allison, B., Millán, J., Graimann, B., Jackson, M.: Brain–computer interfaces for HCI and games. In: Proceedings ACM CHI 2008 (2008)

    Google Scholar 

  77. Nijholt, A., Plass-Oude Bos, D., Reuderink, B.: Turning shortcomings into challenges: Brain–computer interfaces for games. Entertain. Comput. 1(2), 85–94 (2009)

    Google Scholar 

  78. Nilsen, D., Gillen, G., Gordon, A.: Use of mental practice to improve upper-limb recovery after stroke: A systematic review. Am. J. Occup. Ther. 64(5), 695–708 (2010)

    Google Scholar 

  79. Obermaier, B., Müller, G.R., Pfurtscheller, G.: “Virtual keyboard” controlled by spontaneous EEG activity. IEEE Trans. Neural Syst. Rehabil. Eng. 11, 422–426 (2003)

    Google Scholar 

  80. Parra, L.C., Spence, C.D., Gerson, A.D., Sajda, P.: Response error correction—A demonstration of improved human-machine performance using real-time EEG monitoring. IEEE Trans. Neural Syst. Rehabil. Eng. 11(2), 173–177 (2003)

    Google Scholar 

  81. Perdikis, S., Leeb, R., Liboni, N., Coincenot, L., Giugliemma, C., Millán, J.: Bci for augmenting communication capabilities of disabled people. In: Proceedings of the TOBI Workshop 2010, Integrating Brain–Computer Interfaces with Conventional Assistive Technology, p 17 (2010)

    Google Scholar 

  82. Perrin, X., Chavarriaga, R., Colas, F., Siegwart, R., Millán, J.: Brain-coupled interaction for semi-autonomous navigation of an assistive robot. Rob. Auton. Syst. 58(12), 1246–1255 (2010)

    Google Scholar 

  83. Pfurtscheller, G., Neuper, C.: Future prospects of ERD/ERS in the context of brain–computer interface (BCI) developments. In: Neuper, C., Klimesch W (eds) Event-Related Dynamics of Brain Oscillations, Progress in Brain Research, vol. 159, pp. 433–437. Elsevier, London (2006)

    Google Scholar 

  84. Pfurtscheller, G., Müller, G.R., Pfurtscheller, J., Gerner, H.J., Rupp, R.: “Thought”-control of functional electrical stimulation to restore handgrasp in a patient with tetraplegia. Neurosci. Lett. 351, 33–36 (2003)

    Google Scholar 

  85. Pfurtscheller, G., Müller-Putz, G., Scherer, R., Neuper, C.: Rehabilitation with brain–computer interface systems. IEEE Computer Mag. 41, 58–65 (2008)

    Google Scholar 

  86. Pfurtscheller, G., Allison, B., Bauernfeind, G., Brunner, C., Solis Escalante, T., Scherer, R., Zander, T., Müller-Putz, G., Neuper, C., Birbaumer, N.: The hybrid BCI. Front. Neurosci. 4, 42 (2010)

    Google Scholar 

  87. Piccione, F., Giorgi, F., Tonin, P., Priftis, K., Giove, S., Silvoni, S., Palmas, G., Beverina, F.: P300-based brain computer interface: Reliability and performance in healthy and paralysed participants. Clin. Neurophysiol. 117(3), 531–537 (2006)

    Google Scholar 

  88. Pichiorri, F., Cincotti, F., Fallani, F., Pisotta, I., Morone, G., Molinari, M., Mattia, D.: Towards a brain computer interface-based rehabilitation: from bench to bedside. In: Proceedings of the 5th Int. Brain–Computer Interface Conference, Verlag der Technischen Universität Graz, Graz, Austria, pp. 268–271 (2011)

    Google Scholar 

  89. Pineda, J., Brang, D., Hecht, E., Edwards, L., Carey, S., Bacon, M., Futagaki, C., Suk, D., Tom, J., Birnbaum, C., Rork, A.: Positive behavioral and electrophysiological changes following neurofeedback training in children with autism. Res. Autism Spectr. Disord. 2(3), 557–581 (2008)

    Google Scholar 

  90. Pineda, J.A., Silverman, D.S., Vankov, A., Hestenes, J.: Learning to control brain rhythms: making a brain–computer interface possible. IEEE Trans. Neural Syst. Rehabil. Eng. 11, 181–184 (2003)

    Google Scholar 

  91. Plass-Oude Bos, D., Reuderink, B., van de Laar, B., Gürkök, H., Mühl, C., Poel, M., Nijholt, A., Heylen, D.: Brain–computer interfacing and games. In: Tan, D., Nijholt, A. (eds.) Brain–Computer Interfaces. Applying our Minds to Human–Computer Interaction, Chap. 10, pp. 149–178. Springer, London (2010)

  92. d R Millán, J., Ferrez, P., Seidl, T.: Validation of brain-machine interfaces during parabolic flight. Int. Rev. Neurobiol. 86, 189–197 (2009)

    Google Scholar 

  93. Rebsamen, B., Guan, C., Zhang, H., Wang, C., Teo, C., Ang, M., Burdet, E.: A brain controlled wheelchair to navigate in familiar environments. IEEE Trans. Neural Syst. Rehabil. Eng. 18(6), 590–598 (2010)

    Google Scholar 

  94. Riccio, A., Leotta, F., Bianchi, L., Aloise, F., Zickler, C., Hoogerwerf, E.J., Kübler, A., Mattia, D., Cincotti, F.: Workload measurement in a communication application operated through a p300-based brain–computer interface. J. Neural Eng. 8(2), 025,028 (2011)

    Google Scholar 

  95. Ron-Angevin, R., Diaz-Estrella, A., Velasco-Alvarez, F.: A two-class brain computer interface to freely navigate through virtual worlds. Biomed. Tech. (Berl.) 54(3), 126–133 (2009)

    Google Scholar 

  96. Saab, J., Battes, B., Grosse-Wentrup, M.: Simultaneous EEG recordings with dry and wet electrodes in motor-imagery. In: Proceedings of the 5th Int. Brain–Computer Interface Conference, Verlag der Technischen Universität Graz, Graz, Austria, pp. 312–315 (2011)

    Google Scholar 

  97. Schalk, G., Wolpaw, J.R., McFarland, D.J., Pfurtscheller, G.: EEG-based communication: Presence of an error potential. Clin. Neurophysiol. 111(12), 2138–2144 (2000)

    Google Scholar 

  98. Scherer, R., Müller, G.R., Neuper, C., Graimann, B., Pfurtscheller, G.: An asynchronously controlled EEG-based virtual keyboard: Improvement of the spelling rate. IEEE Trans. Biomed. Eng. 51(6), 979–984 (2004)

    Google Scholar 

  99. Scherer, R., Müller-Putz, G.R., Pfurtscheller, G.: Self-initiation of EEG-based brain–computer communication using the heart rate response. J. Neural Eng. 4, L23–L29 (2007)

    Google Scholar 

  100. Scherer, R., Lee, F., Schlögl, A., Leeb, R., Bischof, H., Pfurtscheller, G.: Toward self-paced brain–computer communication: navigation through virtual worlds. IEEE Trans. Biomed. Eng. 55, 675–682 (2008)

    Google Scholar 

  101. Schöner, G., Dose, M., Engels, C.: Dynamics of behavior: Theory and applications for autonomous robot architectures. Robot. Auton. Syst. 16, 213–245 (1995)

    Google Scholar 

  102. Sellers, E.W., Krusienski, D.J., McFarland, D.J., Vaughan, T.M., Wolpaw, J.R.: A p300 event-related potential brain–computer interface (BCI): The effects of matrix size and inter stimulus interval on performance. Biol. Psychol. 73(3), 242–252 (2006)

    Google Scholar 

  103. Silvoni, S., Volpato, C., Cavinato, M., Marchetti, M., Priftis, K., Merico, A., Tonin, P., Koutsikos, K., Beverina, F., Piccione, F.: P300-based brain–computer interface communication: Evaluation and follow-up in amyotrophic lateral sclerosis. Front. Neurosci. 3, 60 (2009)

    Google Scholar 

  104. Silvoni, S., Ramos-Murguialday, A., Cavinato, M., Volpato, C., Cisotto, G., Turolla, A., Piccione, F., Birbaumer, N.: Brain–computer interface in stroke: A review of progress. Clin. EEG Neurosci. 42(4) pp. 245–252 (2011)

    Google Scholar 

  105. Tangermann, M., Krauledat, M., Grzeska, K., Sagebaum, M., Vidaurre, C., Blankertz, B., Müller, K.: Playing pinball with non-invasive BCI. In: Proceedings of NIPS (2008)

    Google Scholar 

  106. Tavella, M., Leeb, R., Rupp, R., Millán, J.: Towards natural non-invasive hand neuroprostheses for daily living. In: Proc. 32rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society EMBC 2010, pp. 126–129 (2010)

    Google Scholar 

  107. Taylor, S.F., Stern, E.R., Gehring, W.J.: Neural systems for error monitoring: Recent findings and theoretical perspectives. Neuroscientist 13(2), 160–172 (2007)

    Google Scholar 

  108. Thorsen, R., Spadone, R., Ferrarin, M.: A pilot study of myoelectrically controlled FES of upper extremity. IEEE Trans. Neural Syst. Rehabil. Eng. 9, 161–168 (2001)

    Google Scholar 

  109. Tonin, L., Leeb, R., Tavella, M., Perdikis, S., del R Millán, J.: The role of shared-control in BCI-based telepresence. In: Proc. of 2010 IEEE International Conference on Systems, Man and Cybernetics (2010)

    Google Scholar 

  110. Tonin, L., Carslon, T., Leeb, R., Millán, J.: Brain-controlled telepresence robot by motor-disabled people. In: Proc. Annual International Conference of the IEEE Engineering in Medicine and Biology Society EMBC 2011 (2011)

    Google Scholar 

  111. Trejo, L., Kochavi, R., Kubitz, K., Montgomery, L., Rosipal, R., Matthews, B.: EEG-based estimation of cognitive fatigue. In: Proc. SPIE, vol. 5797 (2005)

    Google Scholar 

  112. Valbuena, D., Sugiarto, I., Gräser, A.: Spelling with the Bremen brain–computer interface and the integrated SSVEP. In: Proc 4th Intl. Brain–Computer Interface Workshop and Training Course, Graz, Austria (2008)

    Google Scholar 

  113. Vanacker, G., Millán, J., Lew, E., Ferrez, P., Galán Moles, F., Philips, J., Van Brussel, H., Nuttin, M.: Context-based filtering for assisted brain-actuated wheelchair driving. Comput. Intell. Neurosci. 2007, ID 25,130 (2007)

    Google Scholar 

  114. Vanhooydonck, D., Demeester, E., Nuttin, M., Van Brussel, H.: Shared control for intelligent wheelchairs: An implicit estimation of the user intention. In: Proc. 1st Int. Workshop Advances in Service Robot., pp. 176–182 (2003)

    Google Scholar 

  115. Williamson, J., Murray-Smith, R., Blankertz, B., Krauledat, M., Müller, K.: Designing for uncertain, asymmetric control: Interaction design for brain–computer interfaces. Int. J. Hum. Comput. Stud. 67(10), 827–841 (2009)

    Google Scholar 

  116. Wills, S., MacKay, D.: DASHER—an efficient writing system for brain–computer interfaces? IEEE Trans. Neural. Syst. Rehabil. Eng. 14, 244–246 (2006)

    Google Scholar 

  117. Wolpaw, J.R., Loeb, G.E., Allison, B.Z., Donchin, E., do Nascimento, O.F., Heetderks, W.J., Nijboer, F., Shain, W.G., Turner, J.N.: BCI meeting 2005–workshop on signals and recording methods. IEEE Trans. Neural. Syst. Rehabil. Eng. 14, 138–141 (2006)

    Google Scholar 

  118. Zander, T., Lehne, M., Ihme, K., Jatzev, S., Correia, J., Kothe, C., Picht, B., Nijboer, F.: A dry EEG-system for scientific research and brain–computer interfaces. Front. Neurosci. 5, 53 (2011)

    Google Scholar 

  119. Zander, T.O., Kothe, C.: Towards passive brain–computer interfaces: applying brain–computer interface technology to human-machine systems in general. J. Neural Eng. 8(2), 025,005 (2011)

    Google Scholar 

  120. Zickler, C., Donna, V.D., Kaiser, V., Al-Khodairy, A., Kleih, S., Kuebler, A., Malavasi, M., Mattia, D., Mongardi, S., Neuper, C., Rohm, M., Rupp, R.: Brain computer interaction applications for people with disabilities: Defining user needs and user requirements. In: AAATE, p. 5 (2009)

    Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the European Union Seventh Framework Programme ([FP7/2007-2013] under grant agreement TOBI: Tools for Brain-Computer Interaction (FP7-224631) and Opportunity: Activity and Context Recognition with Opportunistic Sensor Configuration (ICT-225938). The dissemination was supported by the European ICT coordination and support action Future BNCI (FP7-248320). This paper only reflects the authors’ views and funding agencies are not liable for any use that may be made of the information contained herein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José d. R. Millán .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Leeb, R., Millán, J.d.R. (2012). Introduction to Devices, Applications and Users: Towards Practical BCIs Based on Shared Control Techniques. In: Allison, B., Dunne, S., Leeb, R., Del R. Millán, J., Nijholt, A. (eds) Towards Practical Brain-Computer Interfaces. Biological and Medical Physics, Biomedical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29746-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29746-5_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29745-8

  • Online ISBN: 978-3-642-29746-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics