Advertisement

Towards Electrocorticographic Electrodes for Chronic Use in BCI Applications

  • Christian Henle
  • Martin Schuettler
  • Jörn Rickert
  • Thomas Stieglitz
Chapter
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)

Abstract

Electrocorticograms (ECoG) have been originally used for presurgical epilepsy monitoring. In the last years, it has been proven that the signals recorded from these electrodes also deliver signals that can be used within brain computer interface (BCI) applications. The state of the art of epicortical electrode arrays for neuroscientific research as well as for clinical applications is reviewed with respect to manufacturing techniques, spatial resolution and the ability to cover large areas of the brain surface. Results from epicortical studies show the feasibility to use ECoG BCI for several applications. We propose a new type of ECoG array that allows for high channel recording keeping the devices flexible and compliant. First results delivered promising results. For chronic BCI applications, wireless, fully implantable systems are mandatory. We summarize the target specifications and conclude with a personal opinion how these implants could look like in the near future.

Keywords

Silicone Rubber Electrode Array Electrode Site Electrode Contact Brain Computer Interface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Part of the work that is presented here has been funded by the German Federal Ministry for Education and Research (BMBF) in the grants Go Bio (313891) and the Bernstein Focus Neurotechnology Freiburg-Tuebingen “The hybrid brain” (01GQ0830).

References

  1. 1.
    Ball, T., Kern, M., Mutschler, I., Aertsen, A., Schulze-Bonhage, A.: Signal quality of simultaneously recorded invasive and non-invasive EEG. Neuroimage 46(3), 708–716 (2009)Google Scholar
  2. 2.
    Birbaumer, N., Ghanayim, N., Hinterberger, T., Iversen, I., Kotchoubey, B., Kübler, A., Perelmouter, J., Taub, E., Flor, H.: A spelling device for the paralysed. Nature 398(6725), 297–298 (1999)Google Scholar
  3. 3.
    Carmena, J.M., Lebedev, M.A., Crist, R.E., O’Dohety, J.E., Santucci, D.M., Dimitrov, D.F., Patil, P.G., Henriquez, C.S., Nicolelis, M.A.L.: Learning to control a brain-machine interface for reaching and grasping by primates. PLoS Biol. 1(2), 193–208 (2003)Google Scholar
  4. 4.
    Caton: Brit. med. J. 2(278) (1875), Ref. Zbl Physiol 4(25) (1890). Bechterew.: (1902) Die Energie des Lebenden Organismus, pp 102. Wiesbaden, GermanyGoogle Scholar
  5. 5.
    Chao, Z.C., Nagasaka, Y., Fujii, N.: Long-term asynchronous decoding of arm motion using electrocorticographic signals in monkey. Front Neuroeng. 3(3), 1–10 (2010)Google Scholar
  6. 6.
    Cordeiro, J., Henle, C., Raab, M., Meier, W., Sieglitz, T., Schulze-Bonhage, A., Rickert, J.: Micromanufactured electrodes for cortical field potentials recording: in vivo study. In: IFMBE Proceedings, vol. 22, pp. 2375–2378 (2008)Google Scholar
  7. 7.
    Coyle, S.M., Ward, T.E., Markham, C.M.: Brain-computer interface using a simplified functional near-infrared spectroscopy system. J. Neural. Eng. 4(3), 219–226 (2007)Google Scholar
  8. 8.
    Freeman, W.J., Holmes, M.D., Burke, B.C., Vanhatalo, S.: Spatial spectra of scalp EEG and EMG from awake humans. Clin. Neurophysiol. 114, 1053–1068 (2003)Google Scholar
  9. 9.
    Fries, P., Womelsdorf, T., Oostenveld, R., Desimone, R.: The effects of visual stimulation and selective visual attention on rhythmic neuronal synchronization in macaque area V4. J. Neurosci. 28(18), 4823–4835 (2008)Google Scholar
  10. 10.
    Fritsch, B., Reis, J., Martinowich, K., Schambra, H.M., Yuanyuan, J., Cohen, L.G., Lu, B.: Direct current stimulation promotes bdnf-dependent synaptic plasticity potential implications for motor learning. Neuron 66(2), 198–204 (2010)Google Scholar
  11. 11.
    Georgopoulos, A.P., Kalaska, J.F., Massey, J.T.: Spatial trajectories and reaction times of aimed movements: effects of practice, uncertainty, and change in target location. J. Neurophysiol. 46(4), 725–743 (1981)Google Scholar
  12. 12.
    Gloor, P.: Hans Berger and the discovery of the electroencephalogram. Electroencephalogr. Clin. Neurophysiol. 28, 1–36 (1969)Google Scholar
  13. 13.
    Green, R.A., Ordonez, J.S., Schuettler, M., Poole-Warren, L.A., Lovell, N.H., Suaning, G.J.: Cytotoxicity of implantable microelectrode arrays produced by laser micromachining. Biomaterials 31(5), 886–893 (2010)Google Scholar
  14. 14.
    Henle, C., Hassler, C., Kohler, F., Schuettler, M.: Mechanical characterization of neural electrodes based on PDMS-parylene C-PDMS sandwiched system. In: Proceedings of the 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 640–643 (2011)Google Scholar
  15. 15.
    Henle, C., Madjarow, A., Schuettler, M., Stieglitz, T.: Evaluation on cytotoxicity on laser-fabricated neural implants: different manufacturing processes and materials. Biomed. Tech. 55(Suppl. 1), 229–231 (2010)Google Scholar
  16. 16.
    Henle, C., Raab, M., Cordeiro, J.G., Doostkam, S., Schulze-Bonhage, A., Stieglitz, T., Rickert, J.: First long-term in vivo study on subdurally implanted micro-ECoG electrodes, manufactured with a novel laser technology. Biomed. Microdevices 13(1), 59–68 (2011)Google Scholar
  17. 17.
    Henle, C., Schuettler, M., Ordonez, J.S., Stieglitz, T.: Scaling limitations of laser-fabricatednerve electrode arrays. In: Proceedings of the International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 4208–4211 (2008)Google Scholar
  18. 18.
    Hepp-Reymond, M.C.: Neurosciences, functional organization of motor cortex and its participation in voluntary movements. Comp. Prim. Biol. 4, 501–624 (1988)Google Scholar
  19. 19.
    Hermes, D., Vansteensel, M.J., Albers, A.M., Bleichner, M.G., Benedictus, M.R., Mendez Orellana, C., Aarnoutse, E.J., Ramsey, N.F.: Functional MRI-based identification of brain areas involved in motor imagery for implantable brain-computer interfaces. J. Neural. Eng. 8(2), 025007 (2011)Google Scholar
  20. 20.
    Hochberg, L.R., Serruya, M.D., Friehs, G.M., Mukand, J.A., Saleh, M., Caplan, A.H., Branner, A., Chen, D., Penn, R.D., Donoghue, J.P.: Neuronal ensemble control of prosthetic devices by a human with Tetraplegia. Nature 442(7099), 164–171 (2006)Google Scholar
  21. 21.
    Kellis, S.S., House, P.A., Thomson, K.E., Brown, R., Greger, B.: Human neocortical electrical activity recorded on nonpenetrating microwire arrays: applicability for neuroprostheses.Neurosurg. Focus 27(1), E9 (2009)Google Scholar
  22. 22.
    Kohler, F., Schuettler, M., Ordonez, J.S., Stieglitz, T.: Laser microfabrication of neural electrode arrays: comparison of nanosecond and picosecond laser technology. In: Proceedings of the IFESS (2011)Google Scholar
  23. 23.
    Leuthardt, E.C., Gaona, C., Sharma, M., Szrama, N., Roland, J., Freudenberg, Z., Solis, J., Breshears, J., Schalk, G.: Using the electrocorticographic speech network to control a brain-computer interface in humans. J. Neural. Eng. 8(3), 036004 (2011)Google Scholar
  24. 24.
    Leuthardt, E.C., Schalk, G., Wolpaw, J.R., Ojemann, J.G., Moran, D.W.: A brain–computer interface using electrocorticographic signals in humans. J. Neural Eng. 1, 63–71 (2004)Google Scholar
  25. 25.
    Mellinger, J., Schalk, G., Braun, C., Preissl, H., Rosenstiel, W., Birbaumer, N., Kübler, A.: An MEG-based brain-computer interface (BCI). Neuroimage 36(3), 581–593 (2007)Google Scholar
  26. 26.
    Moran, D.: Evolution of brain–computer interface: action potentials, local field potentials and electrocorticograms. Curr. Opin. Neurobiol. 20, 741–745 (2010)Google Scholar
  27. 27.
    Moritz, C.T., Perlmutter, S.I., Fetz, E.E.: Direct control of paralysed muscles by cortical neurons. Nature 456(7222), 639–642 (2008)Google Scholar
  28. 28.
    Murguialday, A.R., Hill, J., Bensch, M., Martens, S., Halder, S., Nijboer, F., Schoelkopf, B., Birbaumer, N., Gharabaghi, A.: Transition from the locked in to the completely locked-in state: a physiological analysis. Clin. Neurophysiol. 122(5), 925–933 (2011)Google Scholar
  29. 29.
    Nagaoka, T., Sakatani, K., Awano, T., Yokose, N., Hoshino, T., Murata, Y., Katayama, Y., Ishikawa, A., Eda, H.: Development of a new rehabilitation system based on a brain–computer interface using near-infrared spectroscopy. Adv. Exp. Med. Biol. 662, 497–503 (2010)Google Scholar
  30. 30.
    Ordonez, J., Keller, M., Schuettler, M., Stieglitz, T., Wilder, J., Guenther, T., Suaning, G.J.: High-Density Hermetic Feedthroughs for Multi-Channel Implantable Electronics. Proc. Conf. Tech. Assis. Rehab. (2011). IGEPrint Internet, ISSN 2192-161XGoogle Scholar
  31. 31.
    Pfurtscheller, G., Graimann, B., Huggins, J.E., Levine, S.P., Schuh, L.A.: Spatiotemporal patterns of beta desynchronization and gamma synchronization in corticographic data during self-paced movement. Clin. Neurophysiol. 114, 1226–1236 (2003)Google Scholar
  32. 32.
    Pistohl, T., Schulze-Bonhage, A., Aertsen, A., Mehring, C., Ball, T.: Decoding natural grasp types from human ECoG. Neuroimage 59(1), 248–260 (2012)Google Scholar
  33. 33.
    Rousche, J., Petersen, R.S., Battiston, S., Gianotta, S., Diamond, M.E.: Examination of the Spatial and Temporal Distribution of Sensory Cortical Activity Using a 100-electrode Array. J. Neurosci. Meth. 90, 57–66 (1999)Google Scholar
  34. 34.
    Rubehn, B., Bosman, C., Oostenveld, R., Fries, P., Stieglitz, T.: A MEMS-based flexible multichannel ECoG-electrode array. J. Neural. Eng. 6(3), 036003 (2009)Google Scholar
  35. 35.
    Schuettler, M.: Electrochemical properties of platinum electrodes in vitro: comparison of six different surfaces qualities. In: Proceedings of the International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 186–189 (2007)Google Scholar
  36. 36.
    Schuettler, M., Henle, C., Ordonez, J.S., Meier, W., Guenter, T., Stieglitz, T.: Interconnection technologies for laser-patterned electrode arrays. In: Proceedings of the International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 3212–3215 (2008)Google Scholar
  37. 37.
    Schuettler, M., Henle, C., Ordonez, J.S., Suaning, G.J., Lovell, N.H., Stieglitz, T.: Patterning of silicone rubber for micro-electrode array fabrication. In: Proceedings of the IEEE Conference on Neural Engineering, pp. 53–56 (2007)Google Scholar
  38. 38.
    Schuettler, M., Ordonez, J.S., Henle, C., Oh, D., Gilad, O., Holder, D.S.: A flexible 29 channel epicortical electrode array. In: Proceedings of the 13th Annual Conference of the International Functional Electrical Stimulation Society, pp. 232–234 (2008)Google Scholar
  39. 39.
    Schuettler, M., Ordonez, J.S., Santisteban, T.S., Schatz, A., Wilde, J., Stieglitz, T.: Fabrication and test of a hermetic miniature implant package with 360 electrical feedthroughs. In: Proceedings of the International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 578, pp. 1585–1588 (2010)Google Scholar
  40. 40.
    Schuettler, M., Pfau, D., Ordonez, J.S., Henle, C., Woias, P., Stieglitz, T.: Stretchable tracks for laser-machined neural electrode arrays. In: Proceedings of the International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1612–1615 (2009)Google Scholar
  41. 41.
    Schuettler, M., Stiess, S., King, B.V., Suaning, G.J.: Fabrication of implantable microelectrode arrays by laser cutting of silicone rubber and platinum foil. J. Neural. Eng. 2(1), 121–128 (2005)Google Scholar
  42. 42.
    Sitaram, R., Caria, A., Birbaumer, N.: Hemodynamic brain–computer interfaces for communication and rehabilitation. Neural Netw. (2009) 22, 1320–1328Google Scholar
  43. 43.
    Stieglitz, T., Rubehn, B., Henle, C., Kisban, S., Herwik, S., Ruther, P., Schuettler, M.: Brain–computer interfaces: An overview of the hardware to record neural signals from the cortex. In: Verhaagen, J., Hol, E.M., Huitinga, I., Wijnhold, J., Bergen, A.B., Boer, G.J., Swaab, D.F. (eds.) NeurotherapyProgress in Restorative Neuroscience and Neurology. Prog. Brain Res. 175, 297–315 (2009)Google Scholar
  44. 44.
    Van Gompel, J.J., Stead, S.M., Giannini, C., Meyer, F.B., Marsh, W.R., Fountain, T., So, E., Cohen-Gadol, A., Lee, K.H., Worrell, G.A.: Phase I trial: safety and feasibility of intracranial electroencephalography using hybrid subdural electrodes containing macro- and microelectrode arrays. Neurosurg. Focus. 25(3), E23 (2008)Google Scholar
  45. 45.
    Vidaurre, C., Sannelli, C., Müller, K.R., Blankertz, B.: Machine-Learning-Based Coadaptive Calibration for Brain–Computer Interfaces. Neural Comput. (2010) [Epub ahead of print]Google Scholar
  46. 46.
    Williams, J.C., Hippensteel, J.A., Dilgen, J., Shain, J.W., Kipke, D.R.: Complex Impedance Spectroscopy for Monitoring Tissue Responses to Inserted Neural Implants. J. Neural Eng. 4(4), 410–423 (2007)Google Scholar
  47. 47.
    Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain–computer interfaces for communication and control. Clin. Neurophysiol. 113, 767–791 (2002)Google Scholar
  48. 48.
    Yanagisawa, T., Hirata, M., Saitoh, Y., Kato, A., Shibuya, D., Kamitani, Y., Yoshimine, T.: Neural decoding using gyral and intrasulcal electrocorticograms. Neuroimage 45(4), 1099–2106 (2009)Google Scholar
  49. 49.
    Product Catalogue 2012. http://www.adtechmedical.com
  50. 50.
    Craggs, M.D.: The cortical control of limb prostheses. Ph.D., University of London (1974)Google Scholar
  51. 51.
    Tsytsarev, V., Taketani, M., Schottler, F., Tanaka, S., Hara, M.: A new planar multielectrode array: Recording from a rat auditory cortex. J. Neural. Eng. 3(4), 293–298 (2006)Google Scholar
  52. 52.
    Malkin, R.A., Pendley, B.D.: Construction of a very high-density extracellular electrode array. Am. J. Physiol. Heart C, 279, 437–442 (2000)Google Scholar
  53. 53.
    Takahashi, H., Ejiri, T., Nakao, M., Nakamura, N., Kaga, K., Herve, T.: Microelectrode array on folding polyimide ribbon for epidural mapping of functional evoked potentials. IEEE Trans. Biomed. Eng. 50(4), 510–516 (2003)Google Scholar
  54. 54.
    Molina-Luna, K., Buitrago, M.M., Hertler, B., Schubring, M., Haiss, F., Nisch, W., Schulz, J.B., Luft, A.R.: Cortical stimulation mapping using epidurally implanted thin-film microelectrode arrays. J. Neurosci. Meth. 161, 118–125 (2007)Google Scholar
  55. 55.
    Kitzmiller, J., Beversdorf, D., Hansford, D.: Fabrication and testing of microelectrodes for small-field cortical surface recordings. Biomed. Microdevices 8, 81–85 (2006)Google Scholar
  56. 56.
    Hollenberg, B.A., Richards, C.D., Richards, R., Bahr, D.F., Rector, D.M.: A MEMS fabricated flexible electrode array for recording surface field potentials. J. Neurosci. Meth. 153, 147–153 (2006)Google Scholar
  57. 57.
    Rubehn, B., Bosman, C., Oostenveld, R., Fries, P., Stieglitz, T.: A MEMS-based flexible multichannel ECoG-electrode array. J. Neural. Eng. 6(3), 036003 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Christian Henle
    • 1
    • 2
  • Martin Schuettler
    • 1
    • 2
  • Jörn Rickert
    • 2
    • 3
  • Thomas Stieglitz
    • 1
    • 2
    • 3
  1. 1.Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering - IMTEKUniversity of FreiburgFreiburgGermany
  2. 2.Cortec GmbHFreiburgGermany
  3. 3.Bernstein Center FreiburgUniversity FreiburgFreiburgGermany

Personalised recommendations