Can Dry EEG Sensors Improve the Usability of SMR, P300 and SSVEP Based BCIs?

Chapter
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)

Abstract

A BCI enables a new communication channel that bypasses the standard neural pathways and output channels and in order to control an external device. BCI technology has been developed to enable lost body or communication functions in handicapped persons. Recently BCI systems are used for communication purposes, to control robotic devices to control games or for rehabilitation. This means BCI systems are not only built for user groups with special needs but also for healthy people. A limiting factor in the wide-spread application is the usage of abrasive gel and conductive paste to mount EEG electrodes. Therefore many research groups are now working on the practical usability of dry electrodes to completely avoid the usage of electrode gel. In this chapter results for endogenous and exogenous BCI approaches are presented and discussed based on the g.SAHARA dry electrode sensor concept. Raw EEG data, power spectra, the time course of evoked potentials, ERD/ERS values and BCI accuracy are compared for three BCI setups based on P300, SMR and SSVEP BCIs. Although the focus in this study was set to P300 evoked potentials it could be demonstrated that the used electrode concept works well for BCI based on P300, SMR and SSVEP BCI.

Keywords

Linear Discriminant Analysis Motor Imagery Evoke Potential Slow Cortical Potential Beta Frequency Range 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Allison, B., Luth, T., Valbuena, D., Teymourian, A., Volosyak, I., Graser, A.: BCI demographics: How many (and what kinds of) people can use an SSVEP BCI? IEEE Trans. Neural Syst. Rehabil. Eng. 18(2), 107–116 (2010)Google Scholar
  2. 2.
    Birbaumer, N., Ghanayim, N., Hinterberger, T., Iversen, I., Kotchoubey, B., Kubler, A., Perelmouter, J., Taub, E., Flor, H.: A spelling device for the paralysed. Nature 398, 297–298 (1999)Google Scholar
  3. 3.
    Blankertz, B., Losch, F., Krauledat, M., Dornhege, G., Curio, G., Muller, K.-R.: The Berlin brain–computer interface: Accurate performance from first-session in BCI-naive subjects. IEEE Trans. Biomed. Eng. 55(10), 2452–2462 (2008)Google Scholar
  4. 4.
    Cincotti, F., Kauhanen, L., Aloise, F., Palomaki, T., Caporusso, N., Jylanki, P., Babiloni, F., Vanacker, G., Nuttin, M., Marciani, M.G., Del, R.M., Mattia, D.: Preliminary experimentation on vibrotactile feedback in the context of mu-rhythm based BCI. Conf. Proc. IEEE Eng. Med. Biol. Soc., 2007, pp. 4739–4742 (2007)Google Scholar
  5. 5.
    Donchin, E., Spencer, K.M., Wijesinghe, R.: The mental prosthesis: assessing the speed of a P300-based brain–computer interface. IEEE Trans. Rehabil. Eng. 8, 174–179 (2000)Google Scholar
  6. 6.
    Edlinger, G., Holzner, C., Guger, C., Groenegress, C., Slater, M.: Brain–computer interfaces for goal orientated control of a virtual smart home environment. 4th International IEEE/EMBS conference on Neural Engineering. NER09, pp. 463–465 (2009)Google Scholar
  7. 7.
    Farwell, L.A., Donchin, E.: Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr. Clin. Neurophysiol. 70, 510–523 (1988)Google Scholar
  8. 8.
    Friman, O.: Multiple channel detection of steady-state visual evoked potentials for brain–computer interfaces. IEEE Trans. Biomed. Eng. 54(4), 742 (2007)Google Scholar
  9. 9.
    Gargiulo, G., Bifulco, P., Calvo, R.A., Cesarelli, M., Jin, C., van Schaik, A.A.: mobile EEG system with dry electrodes. IEEE Biomedical Circuits and Systems Conference, pp. 273–276 (2008)Google Scholar
  10. 10.
    Grozea, C., Voinescu, C.D., Fazli, S.: Bristle-sensors-low-cost flexible passive dry EEG electrodes for neurofeedback and BCI applications. J. Neural Eng. 8(2), 025008 (2011)Google Scholar
  11. 11.
    Guger, C., Daban, S., Sellers, E., Holzner, C., Krausz, G., Carabalona, R., Gramatica, F., Edlinger, G.: How many people are able to control a P300-based brain–computer interface (BCI)? Neurosci. Lett. 462(1), 94–98 (2009)Google Scholar
  12. 12.
    Guger, C., Edlinger, G., Harkam, W., Niedermayer, I., Pfurtscheller, G.: How many people are able to operate an EEG-based brain–computer interface (BCI)? IEEE Trans. Neural Syst. Rehabil. Eng. 11(2), 145–147 (2003)Google Scholar
  13. 13.
    Ko, W.H., Hynecek, J.: Dry electrodes and electrode amplifiers, In: Miller, H.A., Harrison, D.C. (eds.) Biomedical Electrode Technology, pp. 169–181. Academic Press, New York (1974)Google Scholar
  14. 14.
    Krusienski, D.J., Sellers, E.W., McFarland, D.J., Vaughan, T.M., Wolpaw, J.R.: Toward enhanced P300 speller performance. J. Neurosci. Methods 167, 15–21 (2008)Google Scholar
  15. 15.
    Leeb, R., Lee, F., Keinrath, C., Scherer, R., Bischof, H., Pfurtscheller, G.: Brain–computer communication: Motivation, aim, and impact of exploring a virtual apartment. IEEE Trans. Neural Syst. Rehabil. Eng. 15(4), 473–482 (2007)Google Scholar
  16. 16.
    Millan, J.R., Carmena, J.M.: Invasive or noninvasive: understanding brain-machine interface technology. IEEE Eng. Med. Biol. Mag. 29(1), 16–22 (2010)Google Scholar
  17. 17.
    Muller-Putz, G.R., Pfurtscheller, G.: Control of an electrical prosthesis with an SSVEP-based BCI. IEEE Trans. Biomed. Eng. 55, 361–364 (2008)Google Scholar
  18. 18.
    Pfurtscheller, G., Allison, B.Z., Brunner, C., Bauernfeind, G., Solis-Escalante, T., Scherer, R., Zander, T.O., Mueller-Putz, G., Neuper, C., Birbaumer, N.: The Hybrid BCI. Front. Neurosci. 21(4), 42 (2010)Google Scholar
  19. 19.
    Pfurtscheller, G., Neuper, C., Müller, G.R., Obermaier, B., Krausz, G., Schlögl, A., Scherer, R., Graimann, B., Keinrath, C., Skliris, D., Wörtz, M., Supp, G., Schrank, C.: Graz-BCI: state of the art and clinical applications. IEEE Trans. Neural Syst. Rehabil. Eng. 11(2), 177–180 (2003)Google Scholar
  20. 20.
    Popescu, F., Fazli, S., Badower, Y., Blankertz, B., Muller, K.-R.: Single trial classification of motor imagination using 6 dry EEG electrodes. PLoS One 2(7), e637 (2007)Google Scholar
  21. 21.
    Portnoy, W., David, R., Akers, L.: Insulated ECG Electrodes. In: Miller, H.A., Harrison, D.C. (eds.) Biomedical Electrode Technology. Academic Press, New York (1974)Google Scholar
  22. 22.
    Schalk, G., Kubanek, J., Miller, K.J., Anderson, N.R., Leuthardt, E.C., Ojemann, J.G., Limbrick, D., Moran, D., Gerhardt, L.A., Wolpaw, J.R.: Decoding two-dimensional movement trajectories using electrocorticographic signals in humans. J. Neural Eng. 4(3), 264–275 (2007)Google Scholar
  23. 23.
    Sellers, E.W.: Brain–computer interface research at the University of South Florida cognitive psychophysiology laboratory: the P300 speller. IEEE Trans. Neural Syst. Rehabil. Eng. 14(2), 221 (2006)Google Scholar
  24. 24.
    Sellers, E.W., Krusienski, D.J., McFarland, D.J., Vaughan, T.M., Wolpaw, J.R.: A P300 event-related potential brain–computer interface (BCI): The effects of matrix size and inter stimulus interval on performance. Biol. Psychol. 73, 242–252 (2006)Google Scholar
  25. 25.
    Taheri, B.A., Knight, R.T., Smith, R.L.: A dry electrode for EEG recording. Electroenceph. Clin. Neurophysiol. 90(5), 376–383 (1994)Google Scholar
  26. 26.
    Tam, H.W., Webster, J.G.: Minimizing electrode motion artifact by skin abrasion. IEEE Trans. Biomed. Eng. 24(2), 134–139 (1977)Google Scholar
  27. 27.
    Volosyak, I., Valbuena, D., Malechka, T., Peuscher, J., Graser, A.: Brain–computer interface using water-based electrodes. J. Neural Eng. 7(6), 066007 (2010)Google Scholar
  28. 28.
    Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain–computer interfaces for communication and control. Clin. Neurophysiol. 113(6), 767–791 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.g.tec medical engineering GmbHSchiedlbergAustria
  2. 2.Guger Technologies OGGrazAustria

Personalised recommendations