Recent and Upcoming BCI Progress: Overview, Analysis, and Recommendations

  • Brendan Z. Allison
  • Stephen Dunne
  • Robert Leeb
  • José del R. Millán
  • Anton Nijholt
Chapter
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)

Abstract

Brain–computer interfaces (BCIs) are finally moving out of the laboratory and beginning to gain acceptance in real-world situations. As BCIs gain attention with broader groups of users, including persons with different disabilities and healthy users, numerous practical questions gain importance. What are the most practical ways to detect and analyze brain activity in field settings? Which devices and applications are most useful for different people? How can we make BCIs more natural and sensitive, and how can BCI technologies improve usability? What are some general trends and issues, such as combining different BCIs or assessing and comparing performance? This book chapter provides an overview of the different sections of this book, providing a summary of how authors address these and other questions. We also present some predictions and recommendations that ensue from our experience from discussing these and other issues with our authors and other researchers and developers within the BCI community. We conclude that, although some directions are hard to predict, the field is definitely growing and changing rapidly, and will continue doing so in the next several years.

Keywords

Independent Component Analysis Healthy User Modest Progress Multimodal Environment Invasive BCIs 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Allison, B.Z.: Toward ubiquitous BCIs. Brain–computer interfaces. The Frontiers Collection, pp. 357–387 (2010)Google Scholar
  2. 2.
    Allison, B.Z.: Trends in BCI research: progress today, backlash tomorrow? XRDS: Crossroads. The ACM Magazine for Students 18(1), 18–22 (2011). doi:10.1145/2000775.2000784Google Scholar
  3. 3.
    Allison, B.Z., Leeb, R., Brunner, C., Müller-Putz, G.R., Bauernfeind, G., Kelly, J.W., and Neuper, C. (2012). Toward smarter BCIs: Extending BCIs through hybridization and intelligent control. Journal of Neural Engineering, 013001.Google Scholar
  4. 4.
    Bin, G., Gao, X., Wang, Y., Li, Y., Hong, B., Gao, S.: A high-speed BCI based on code modulation VEP. J. Neural Eng. 8, 025,015, (2011). doi: 10.1088/1741–2560/8/2/025015Google Scholar
  5. 5.
    Brunner, P., Ritaccio, A.L., Emrich, J.F., Bischof, H., Schalk, G.: Rapid communication with a “P300” matrix speller using electrocorticographic signals (ECoG). Front. Neurosci. 5 (2011)Google Scholar
  6. 6.
    Buch, E., Weber, C., Cohen, L.G., Braun, C., Dimyan, M.A., Ard, T., Mellinger, J., Caria, A., Soekadar, S., Fourkas, A., Birbaumer, N.: Think to move: a neuromagnetic brain–computer interface (BCI) system for chronic stroke. Stroke 39, 910–917 (2008)Google Scholar
  7. 7.
    Carlson, T., Monnard, G., Leeb, R., Millán, J.: Evaluation of Proportional and Discrete Shared Control Paradigms for Low Resolution User Inputs. Proceedings of the 2011 IEEE International Conference on Systems, Man, and Cybernetics, pp. 1044–1049 (2011)Google Scholar
  8. 8.
    Demetriades, A.K., Demetriades, C.K., Watts, C., Ashkan, K.: Brain-machine interface: The challenge of neuroethics. Surgeon 8, 267–269 (2010)Google Scholar
  9. 9.
    Flemisch, O., Adams, A., Conway, S., Goodrich, K., Palmer, M., Schutte, P.: The H-Metaphor as a Guideline for Vehicle Automation and Interaction. (NASA/TM–2003–212672) (2003)Google Scholar
  10. 10.
    Gürkök, H., Nijholt, A.: Brain–computer interfaces for multimodal interaction: a survey and principles. International Journal of Human–Computer Interaction, ISSN 1532–7590 (electronic) 1044–7318 (paper), Taylor & Francis, Oxford, United Kingdom (2011)Google Scholar
  11. 11.
    Kübler, A., Kotchoubey, B., Kaiser, J., Wolpaw, J.R., Birbaumer, N.: Brain–computer communication: unlocking the locked in. Psychol. Bull. 127(3), 358–375 (2001)Google Scholar
  12. 12.
    Lecuyer, A., Lotte, F., Reilly, R., Leeb, R., Hirose, M., Slater, M.: Brain–computer interfaces, virtual reality, and videogames. Computer 41(10), 66–72 (2008)Google Scholar
  13. 13.
    Leeb, R., Keinrath, C., Friedman, D., Guger, C., Scherer, R., Neuper, C., Garau, M., Antley, A., Steed, A., Slater, M., Pfurtscheller, G.: Walking by thinking: the brainwaves are crucial, not the muscles! Presence (Camb.) 15, 500–514 (2006)Google Scholar
  14. 14.
    Leeb, R., Sagha, H., Chavarriaga, R., Millán, J.: A hybrid brain–computer interface based on the fusion of electroencephalographic and electromyographic activities. J. Neural Eng. 8(2), 025,011, (2011). doi:10.1088/1741–2560/8/2/025011, http://dx.doi.org/10.1088/1741-2560/8/2/025011 Google Scholar
  15. 15.
    Long, J., Li, Y., Yu, T., Gu, Z.: Target selection with hybrid feature for BCI-based 2-D cursor control. IEEE Trans. Biomed. Eng. 59(1), 132–140 (2012)Google Scholar
  16. 16.
    F. Lotte, “Brain-Computer Interfaces for 3D Games: Hype or Hope?”, Foundations of Digital Games (FDG’2011), pp. 325-327, 2011. ACM, New York, USAGoogle Scholar
  17. 17.
    Millán, J., Carmena, J.M.: Invasive or noninvasive: understanding brain-machine interface technology. IEEE Eng. Med. Biol. Mag. 29(1), 16–22 (2010)Google Scholar
  18. 18.
    Millán, J., Rupp, R., Müller-Putz, G., Murray-Smith, R., Giugliemma, C., Tangermann, M., Vidaurre, C., Cincotti, F., Kübler, A., Leeb, R., Neuper, C., Müller, K., Mattia, D.: Combining brain–computer interfaces and assistive technologies: State-of-the-art and challenges. Front. Neurosci. 4, 161 (2010). doi:10.3389/fnins.2010.00161Google Scholar
  19. 19.
    Moore, M.M.: Real-world applications for brain–computer interface technology. IEEE Trans. Neural Syst. Rehabil. Eng. 11(2), 162–165 (2003)Google Scholar
  20. 20.
    Müller-Putz, G.R., Scherer, R., Pfurtscheller, G., Rupp, R.: Brain–computer interfaces for control of neuroprostheses: From synchronous to asynchronous mode of operation. Biomedizinische Technik 51, 57–63 (2006)Google Scholar
  21. 21.
    Müller-Putz, G.R., Breitwieser, C., Cincotti, F., Leeb, R., Schreuder, M., Leotta, F., Tavella, M., Bianchi, L., Kreilinger, A., Ramsay, A., Rohm, M., Sagebaum, M., Tonin, L., Neuper, C., Millán, J.: Tools for brain–computer interaction: A general concept for a hybrid BCI. Front. Neuroinform. 5, 30 (2011)Google Scholar
  22. 22.
    Pfurtscheller, G., Allison, B., Bauernfeind, G., Brunner, C., Solis Escalante, T., Scherer, R., Zander, T., Müller-Putz, G., Neuper, C., Birbaumer, N.: The hybrid BCI. Front. Neurosci. 4, 42 (2010)Google Scholar
  23. 23.
    Racine, E., Waldman, S., Rosenberg, J., Illes, J.: Contemporary neuroscience in the media. Soc. Sci. Med. 71(4), 725–733 (2010)Google Scholar
  24. 24.
    Regan, D.: Human brain electrophysiology: evoked potentials and evoked magnetic fields in science and medicine. Elsevier, New York (1989)Google Scholar
  25. 25.
    Su, Y., Qi, Y., Luo, J.X., Wu, B., Yang, F., Li, Y., Zhuang, Y.T., Zheng, X.X., Chen, W.D.: A hybrid brain–computer interface control strategy in a virtual environment. J. Zhejiang Univ. Sci. C 12, 351–361, (2011). doi:10.1631/jzus.C1000208Google Scholar
  26. 26.
    Tonin, L., Leeb, R., Tavella, M., Perdikis, S., Millán, J.: The role of shared-control in BCI-based telepresence. Proceedings of 2010 IEEE International Conference on Systems, Man and Cybernetics, pp. 1462–1466 (2010)Google Scholar
  27. 27.
    Vanhooydonck, D., Demeester, E., Nuttin, M., Van Brussel, H.: Shared control for intelligent wheelchairs: An implicit estimation of the user intention. Proc. 1st Int. Workshop Advances in Service Robot, pp. 176–182 (2003)Google Scholar
  28. 28.
    Volosyak, I.: SSVEP-based Bremen-BCI interface – boosting information transfer rates. J. Neural Eng. 8, 036,020 (2011). doi: 10.1088/1741–2560/8/3/036020Google Scholar
  29. 29.
    Williamson, J., Murray-Smith, R., Blankertz, B., Krauledat, M., Müller, K.: Designing for uncertain, asymmetric control: Interaction design for brain–computer interfaces. Int J. Hum. Comput. Stud. 67(10), 827–841 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Brendan Z. Allison
    • 1
  • Stephen Dunne
    • 2
  • Robert Leeb
    • 3
  • José del R. Millán
    • 3
  • Anton Nijholt
    • 4
  1. 1.Department of Cognitive ScienceUniversity of California at San DiegoSan DiegoUSA
  2. 2.BarcelonaSpain
  3. 3.Chair in Non-Invasive Brain-Machine InterfaceÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
  4. 4.Human Media InteractionUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations