Performance Evaluation of a Multi-GPU Enabled Finite Element Method for Computational Electromagnetics

  • Tristan Cabel
  • Joseph Charles
  • Stéphane Lanteri
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7156)


We study the performance of a multi-GPU enabled numerical methodology for the simulation of electromagnetic wave propagation in complex domains and heterogeneous media. For this purpose, the system of time-domain Maxwell equations is discretized by a discontinuous finite element method which is formulated on an unstructured tetrahedral mesh and which relies on a high order interpolation of the electromagnetic field components within a mesh element. The resulting numerical methodology is adapted to parallel computing on a cluster of GPU acceleration cards by adopting a hybrid strategy which combines a coarse grain SPMD programming model for inter-GPU parallelization and a fine grain SIMD programming model for intra-GPU parallelization. The performance improvement resulting from this multiple-GPU algorithmic adaptation is demonstrated through three-dimensional simulations of the propagation of an electromagnetic wave in the head of a mobile phone user.


Shared Memory Discontinuous Galerkin Mobile Phone User Electromagnetic Wave Propagation Numerical Methodology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fezoui, L., Lanteri, S., Lohrengel, S., Piperno, S.: Convergence and stability of a discontinuous Galerkin time-domain method for the 3D heterogeneous Maxwell equations on unstructured meshes. ESAIM: Math. Model. Num. Anal. 39(6), 1149–1176 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Gödel, N., Nunn, N., Warburton, T., Clemens, M.: Scalability of higher-order discontinuous Galerkin FEM computations for solving electromagnetic wave propagation problems on GPU clusters. IEEE. Trans. Magn. 46(8), 3469–3472 (2010)CrossRefGoogle Scholar
  3. 3.
    Klöckner, A., Warburton, T., Bridge, J., Hesthaven, J.: Nodal discontinuous Galerkin methods on graphic processors. J. Comput. Phys. 228, 7863–7882 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Komatitsch, D., Erlebacher, G., Göddeke, D., Michéa, D.: High-order finite-element seismic wave propagation modeling with MPI on a large GPU cluster. J. Comput. Phys. 229(20), 7692–7714 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Komatitsch, D., Göddeke, D., Erlebacher, G., Michéa, D.: Modeling the propagation of elastic waves using spectral elements on a cluster of 192 GPUs. Comput. Sci. Res. Dev. 25, 75–82 (2010)CrossRefGoogle Scholar
  6. 6.
    Cabel, T., Charles, J., Lanteri, S.: Multi-GPU acceleration of a DGTD method for modeling human exposure to electromagnetic waves. Tech. rep., INRIA Research eport RR-7592 (2011),

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Tristan Cabel
    • 1
  • Joseph Charles
    • 1
  • Stéphane Lanteri
    • 1
  1. 1.NACHOS project-teamINRIA Sophia Antipolis-Méditerranée Research CenterSophia Antipolis CedexFrance

Personalised recommendations