Advertisement

Enabling Next-Generation Parallel Circuit Simulation with Trilinos

  • Chris Baker
  • Erik Boman
  • Mike Heroux
  • Eric Keiter
  • Siva Rajamanickam
  • Rich Schiek
  • Heidi Thornquist
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7155)

Abstract

The Xyce Parallel Circuit Simulator, which has demonstrated scalable circuit simulation on hundreds of processors, heavily leverages the high-performance scientific libraries provided by Trilinos. With the move towards multi-core CPUs and GPU technology, retaining this scalability on future parallel architectures will be a challenge. This paper will discuss how Trilinos is an enabling technology that will optimize the trade-off between effort and impact for application codes, like Xyce, in their transition to becoming next-generation simulation tools.

Keywords

circuit simulation parallel computing hybrid computing preconditioned iterative methods load balancing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nagel, L.W.: SPICE 2, a Computer Program to Simulate Semiconductor Circuits, Memorandum ERL-M250, University of California, Berkeley (1975)Google Scholar
  2. 2.
    T. A. Davis: Direct Methods for Sparse Linear Systems. SIAM (2006)Google Scholar
  3. 3.
    Kundert, K.S.: Sparse Matrix Techniques, Circuit Analysis, Simulation and Design (1987)Google Scholar
  4. 4.
    Newton, A.R., Sangiovanni-Vincentelli, A.L.: Relaxation based electrical simulation. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst. 4, 308–330 (1984)CrossRefGoogle Scholar
  5. 5.
    White, J.K., Sangiovanni-Vincentelli, A.: Relaxation techniques for the simulation of VLSI circuits. Kluwer Academic Publishers (1987)Google Scholar
  6. 6.
    Fröhlich, N., Riess, B.M., Wever, U., Zheng, Q.: A New Approach for Parallel Simulation of VLSI-Circuits on a Transistor Level. IEEE Transactions on Circuits and Systems Part I 45(6), 601–613 (1998)CrossRefGoogle Scholar
  7. 7.
    Peng, H., Cheng, C.K.: Parallel transistor level circuit simulation using domain decomposition methods. In: Proceedings of ASP-DAC 2009, pp. 397–402 (2009)Google Scholar
  8. 8.
    Gulati, K., Croix, J.F., Khatr, S.P., Shastry, R.: Fast circuit simulation on graphics processing units. In: Proceedings of ASP-DAC 2009, pp. 403–408 (2009)Google Scholar
  9. 9.
    Keiter, E.R., Thornquist, H.K., Hoekstra, R.J., Russo, T.V., Schiek, R.L., Rankin, E.L.: Parallel Transistor-Level Circuit Simulation. In: Advanced Simulation and Verification of Electronic and Biological Systems (2011)Google Scholar
  10. 10.
    Gropp, W., Lusk, E., Doss, N., Skjellum, A.: A high-performance, portable implementation of the MPI message passing interface standard. Parallel Computing 22(6), 789–828 (1996)zbMATHCrossRefGoogle Scholar
  11. 11.
    Heroux, M.A., et al.: An Overview of the Trilinos Project. ACM TOMS 31, 397–423 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Barby, J.A., Guindi, R.: CircuitSim93: A circuit simulator benchmarking methodology case study. In: Proc. of Sixth Annual IEEE International ASIC Conference and Exhibit (1993)Google Scholar
  13. 13.
    Devine, K.D., Boman, E.G., Heaphy, R.T., Bisseling, R.H., Catalyurek, U.V.: Parallel Hypergraph Partitioning for Scientific Computing. In: Proc. of 20th International Parallel and Distributed Processing Symposium (2006)Google Scholar
  14. 14.
    Thornquist, H.K., et al.: A Parallel Preconditioning Strategy for Efficient Transistor-Level Circuit Simulation. In: IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp. 410-417 (2009)Google Scholar
  15. 15.
    Basermann, A., Jaekel, U., Nordhausen, M.: Parallel iterative solvers for sparse linear systems in circuit simulation. Fut. Gen. Comput. Sys. 21(8), 1275–1284 (2005)CrossRefGoogle Scholar
  16. 16.
    Bomhof, C., vander Vorst, H.: A parallel linear system solver for circuit simulation problems. Num. Lin. Alg. Appl. 7, 649–665 (2000)zbMATHCrossRefGoogle Scholar
  17. 17.
    Stanley, K., Davis, T.: KLU: a Clark Kent’ sparse LU factorization algorithm for circuit matrices. In: SIAM Conference on Parallel Processing for Scientfic Computing (2004)Google Scholar
  18. 18.
    Karypis, G., Kumar, V.: ParMETIS: Parallel Graph Partitioning and Sparse Matrix Ordering Library, CS Dept., Univ. Minn (1997), http://glaros.dtc.umn.edu/gkhome/views/metis
  19. 19.
    Boman, E., Devine, K., Heaphy, R., Hendrickson, B., Mitchell, W.F., John, M.S., Vaughan, C.: Zoltan: Data-Management Services for Parallel Applications: User’s Guide, Sandia National Laboratories (2004), http://www.cs.sandia.gov/Zoltan/Zoltan.html

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Chris Baker
    • 1
  • Erik Boman
    • 2
  • Mike Heroux
    • 2
  • Eric Keiter
    • 2
  • Siva Rajamanickam
    • 2
  • Rich Schiek
    • 2
  • Heidi Thornquist
    • 2
  1. 1.Oak Ridge National LaboratoryOak RidgeUSA
  2. 2.Sandia National LaboratoriesAlbuquerqueUSA

Personalised recommendations