Low-Cost Blood Pressure Monitor Device for Developing Countries

  • Carlos Arteta
  • João S. Domingos
  • Marco A. F. Pimentel
  • Mauro D. Santos
  • Corentin Chiffot
  • David Springer
  • Arvind Raghu
  • Gari D. Clifford
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 83)

Abstract

Taking the Blood Pressure (BP) with a traditional sphygmomanometer requires a trained user. In developed countries, patients who need to monitor their BP at home usually acquire an electronic BP device with an automatic inflate/deflate cycle that determines the BP through the oscillometric method. For patients in resource constrained regions automated BP measurement devices are scarce because supply channels are limited and relative costs are high. Consequently, routine screening for and monitoring of hypertension is not common place. In this project we aim to offer an alternative strategy to measure BP and Heart Rate (HR) in developing countries. Given that mobile phones are becoming increasingly available and affordable in these regions, we designed a system that comprises low-cost peripherals with minimal electronics, offloading the main processing to the phone. A simple pressure sensor passes information to the mobile phone and the oscillometric method is used to determine BP and HR. Data are then transmitted to a central medical record to reduce errors in time stamping and information loss.

Keywords

Blood pressure developing countries electronic medical records hypertension mHealth resource-constrained healthcare low-cost devices 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Murray, C., Lopez, A.: Mortality by cause for eight regions of the world: Global Burden of Disease Study. The Lancet 349(9061), 1269–1276 (1997)CrossRefGoogle Scholar
  2. 2.
    Goldman, L., Ausiello, D.: Cecil Medicine. Saunders Elsevier, PA (2008)Google Scholar
  3. 3.
    Daar, A., Singer, P., et al.: Grand challenges in chronic non-communicable diseases. Nature 450(7169), 494–496 (2007)CrossRefGoogle Scholar
  4. 4.
    Nugent, R.: Chronic diseases in developing countries. Ann. N. Y. Acad. Sci. 1136(7), 70–79 (2008)CrossRefGoogle Scholar
  5. 5.
    Kearney, P., Whelton, M., et al.: Global burden of hypertension: analysis of worldwide data. The Lancet 365(9455), 217–223 (2005)CrossRefGoogle Scholar
  6. 6.
    Mittal, B., Singh, A.: Hypertension in the developing world: challenges and opportunities. Am. J. Kidney Dis. 55(3), 590–598 (2010)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Malkin, R.A.: Design of health care technologies for the developing world. Annu. Rev. Biomed. Eng. 9, 567–587 (2007)CrossRefGoogle Scholar
  8. 8.
    Hug, C.W., Clifford, G.D.: An analysis of the errors in recorded heart rate and blood pressure in the ICU using a complex set of signal quality metrics. In: CIC, pp. 641–644 (2007)Google Scholar
  9. 9.
    Hug, C.W., Clifford, G.D., Reisner, A.T.: Clinician blood pressure documentation of stable intensive care patients: An intelligent archiving agent has a higher association with future hypotension. Crit. Care Med. 39(5), 1006 (2011)CrossRefGoogle Scholar
  10. 10.
    Damasceno, A., Azevedo, A., et al.: Hypertension Prevalence, Awareness, Treatment, and Control in Mozambique. Hypertension 54(1), 77–83 (2009)CrossRefGoogle Scholar
  11. 11.
    Li, H., Meng, Q., Sun, X., et al.: Prevalence, awareness, treatment, and control of hypertension in rural China: results from Shandong Province. J. Hypertens 28(3), 432 (2010)CrossRefGoogle Scholar
  12. 12.
  13. 13.
    Freescale product code: MPXx5050Google Scholar
  14. 14.
    Microchip product code: en533924Google Scholar
  15. 15.
    Ball-Llovera, A., et al.: An experience in implementing the oscillometric algorithm for the noninvasive determination of human blood pressure. In: Proceedings of the 25th Annual International Conference of the IEEE, vol. 4, pp. 3173–3175 (2003)Google Scholar
  16. 16.
    Lin, C., Liu, S., Wang, J., Wen, Z.: Reduction of interference in oscillometric arterial blood pressure measurement using fuzzy logic. IEEE T. Biomed. Eng. 50(4), 432–441 (2003)CrossRefGoogle Scholar
  17. 17.
    Wang, J., Lin, C., Liu, S., et al.: Model-based synthetic fuzzy logic controller for indirect BP measurement. IEEE T. Sys. Man Cy. B 32(3), 306–315 (2002)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Baker, P., Westenskow, D., Kück, K.: Theoretical analysis of non-invasive oscillometric maximum amplitude algorithm for estimating mean blood pressure. Medical and Biological Engineering and Computing 35(3), 271–278 (1997)CrossRefGoogle Scholar
  19. 19.
    Drzewiecki, G., Hood, R., Apple, H.: Theory of the oscillometric maximum and the systolic and diastolic detection ratios. Ann. Biomed. Eng. 22(1), 88–96 (1994)CrossRefGoogle Scholar
  20. 20.
    Geddes, L.: Handbook of blood pressure measurement. Humana Press, Clifton (1991)CrossRefGoogle Scholar
  21. 21.
    Dalvik Virtual Machine, http://code.google.com/p/dalvik/
  22. 22.
  23. 23.
  24. 24.
  25. 25.
    Goonasekera, C.D., Dillon, M.J.: Random zero sphygmomanometer versus automatic oscillometric blood pressure monitor; is either the instrument of choice? J. Hum. Hypertens 9(11), 885–889 (1995)Google Scholar
  26. 26.
    Gupta, M., Shennan, A.H., et al.: Accuracy of oscillometric blood pressure monitoring in pregnancy and pre-eclampsia. BJOG 104(3), 350–355 (1997)CrossRefGoogle Scholar
  27. 27.
    Natarajan, P., Shennan, A.H., et al.: Comparison of auscultatory and oscillometric automated blood pressure monitors in the setting of preeclampsia. AJOG 181(5), 1203–1210 (2008)CrossRefGoogle Scholar
  28. 28.
    Umana, E., Ahmed, W., et al.: Comparison of oscillometric and intraarterial systolic and diastolic BPs in lean, overweight, and obese patients. Angiology 57(1), 41–45 (2008)CrossRefGoogle Scholar
  29. 29.
    Canalys, Android smart phone shipments grow 886% year-on-year in Q2 (2010), http://www.canalys.com/newsroom/android-smart-phone-shipments-grow-886-year-year-q2-2010

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2012

Authors and Affiliations

  • Carlos Arteta
    • 1
    • 2
  • João S. Domingos
    • 1
    • 2
  • Marco A. F. Pimentel
    • 1
    • 2
  • Mauro D. Santos
    • 1
    • 2
  • Corentin Chiffot
    • 2
  • David Springer
    • 2
  • Arvind Raghu
    • 2
  • Gari D. Clifford
    • 2
  1. 1.Centre for Doctoral Training in Healthcare Innovation, Dept. of Engineering ScienceUniversity of OxfordOxfordUK
  2. 2.Institute of Biomedical Engineering, Dept. of Engineering ScienceUniversity of OxfordOxfordUK

Personalised recommendations