Advertisement

Abstract

When computer-assisted surgery was introduced in the early 1990s, the interest of orthopedic specialists was first focused on robotics. In 1995, when we started with computer navigation for the placement of pedicle screws at Ruhr University Bochum, no-one could imagine that this method would gain entry into orthopedic theaters. It involved timeconsuming planning and required preoperative computed tomography (CT); moreover, pairedpoint and surface matching during the operation was difficult for the surgeon (◘ Fig. 1.1).

Keywords

Total Knee Arthroplasty Femoral Component Pedicle Screw Acetabular Component Tibial Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baumbach JA (2012) 10-Jahres-Ergebnisse hinsichtlich Lockerungsrate navigierter versus nicht navigierter Knietotalendoprothesen Typ Aesculap Search aus dem Jahr 1999 Inaugural-Dissertation Ruhr Universität Bochum; vorab publiziert. Int. CAOS-meeting Seoul 2012Google Scholar
  2. Beck M, Moritz K, Gierer P, Gradl G, Harms C, Mittlmeier T (2009) Intraoperative control of pedicle screws using 3-d fluoroscopy. A prospective study in the treatment of thorakolumbar fractures. Z Orthop 147:37–42CrossRefGoogle Scholar
  3. Bellemans J (2009) Navigation and CAS: is D-Day approaching? Knee Surg Sports Arthrosc 17:1141–1142CrossRefGoogle Scholar
  4. Haaker RG, Stockheim M, Kamp M, Proff G, Breitenfelder J, Ottersbach A (2005) Computer-assisted navigation increases precision of component placement in total knee arthroplasty. Clin Orthop 433 152–159PubMedGoogle Scholar
  5. Haaker RG, Tiedjen K, Ottersbach A, Rubenthaler F, Stockheim M, Stiehl JB (2007) Comparison of conventional versus computer – navigated acetabular component insertion. J Arthroplasty 22:151–160PubMedCrossRefGoogle Scholar
  6. Haaker RG, Tiedjen K, Rubenthaler F, Stockheim M (2003) Computerassistierte Hüftpfannennavigation bei primär und sekundär dysplastischen Ausgangssituationen. Z Orthop 141:105–112PubMedCrossRefGoogle Scholar
  7. Haaker R, Wojciechowski M, Patzer P, Willburger RE, Senkal M, Engelhardt M (2007) Minimally invasive unicondylar knee replacement with computer navigation. Orthopaede 35:1073–1080Google Scholar
  8. Ottersbach A, Haaker R (2005) Optimization of cup positioning in THA – comparison between conventional mechanical instrumentation and computer-assisted implanted cups by using the Orthopilot navigation system. Z Orthop 143:611–615PubMedCrossRefGoogle Scholar
  9. Portheine F, Ohnsorge J, Schkommodau E, Radermacher K (2002) CT-basierte Planung und DISOS-Schablonennavigation in der Kniegelenkendoprothetik. In: Konermann W, Haaker R (eds) Navigation und Robotik in der Gelenk- und Wirbelsäulenchirurgie. Springer, Berlin Heidelberg New York, pp 262–272Google Scholar
  10. Victor J, Van Doninck D, Labey L, Innocenti B, Parizel PM, Bellemans (2009) How precise can bony landmarks be determined on a CT scan of the knee? Knee 16:358–365PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Rolf Haaker
    • 1
  1. 1.St. Vincent HospitalBrakel

Personalised recommendations