Advertisement

Applications of Transfer Matrices

  • André Xuereb
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

In this chapter, I will apply the transfer matrix method developed in Chap. 4 to novel cooling geometries outside cavities (Sects. 5.1 and 5.2), as well as inside active ring cavities (Sect.5.3).

Keywords

Friction Force Pump Beam Cavity Length Ring Cavity Beam Waist 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Metzger, C. H. & Karrai, K. Cavity cooling of a microlever. Nature 432, 1002 (2004).Google Scholar
  2. 2.
    Arcizet, O., Cohadon, P. F., Briant, T., Pinard, M. & Heidmann, A. Radiation-pressure cooling and optomechanical instability of a micromirror. Nature 444, 71 (2006).Google Scholar
  3. 3.
    Gigan, S. et al. Self-cooling of a micromirror by radiation pressure. Nature 444, 67 (2006).Google Scholar
  4. 4.
    Schliesser, A., Rivière, R., Anetsberger, G., Arcizet, O. & Kippenberg, T. J. Resolved-sideband cooling of a micromechanical oscillator. Nature Phys. 4, 415 (2008).Google Scholar
  5. 5.
    Thompson, J. D. et al. Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature 452, 72 (2008).Google Scholar
  6. 6.
    Favero, I. & Karrai, K. Cavity cooling of a nanomechanical resonator by light scattering. New J. Phys. 10, 095006 (2008).Google Scholar
  7. 7.
    Xuereb, A., Domokos, P., Horak, P. & Freegarde, T. Cavity cooling of atoms: within and without a cavity. Eur. Phys. J. D 65, 273 (2011).Google Scholar
  8. 8.
    Horak, P., Hechenblaikner, G., Gheri, K. M., Stecher, H. & Ritsch, H. Cavity-induced atom cooling in the strong coupling regime. Phys. Rev. Lett. 79, 4974 (1997).Google Scholar
  9. 9.
    Leibrandt, D. R., Labaziewicz, J., Vuletić, V. & Chuang, I. L. Cavity sideband cooling of a single trapped ion. Phys. Rev. Lett. 103, 103001 (2009).Google Scholar
  10. 10.
    Koch, M. et al. Feedback cooling of a single neutral atom. Phys. Rev. Lett. 105, 173003 (2010).Google Scholar
  11. 11.
    Bhattacharya, M. & Meystre, P. Trapping and cooling a mirror to its quantum mechanical ground state. Phys. Rev. Lett. 99, 073601 (2007).Google Scholar
  12. 12.
    Domokos, P. & Ritsch, H. Mechanical effects of light in optical resonators. J. Opt. Soc. Am. B 20, 1098 (2003).Google Scholar
  13. 13.
    Mücke, M. et al. Electromagnetically induced transparency with single atoms in a cavity. Nature 465, 755 (2010).Google Scholar
  14. 14.
    Steck, D. A. Rubidium 85 D Line Data (2008). URL http://steck.us/alkalidata/rubidium85numbers.pdf. Rubidium 85 D Line Data.
  15. 15.
    Xuereb, A., Freegarde, T., Horak, P. & Domokos, P. Optomechanical cooling with generalized interferometers. Phys. Rev. Lett. 105, 013602 (2010).Google Scholar
  16. 16.
    Braginsky, V. B. & Manukin, A. B. Ponderomotive effects of electromagnetic radiation. Sov. Phys. JETP 25, 653 (1967).Google Scholar
  17. 17.
    Gröblacher, S., Hammerer, K., Vanner, M. R. & Aspelmeyer, M. Observation of strong coupling between a micromechanical resonator and an optical cavity field. Nature 460, 724 (2009).Google Scholar
  18. 18.
    Schliesser, A. & Kippenberg, T. J. Cavity optomechanics with whispering-gallery mode optical micro-resonators. In Paul Berman, E. A. & Lin, C. (eds.) Advances In Atomic, Molecular, and Optical Physics, vol. 58 of Advances In Atomic, Molecular, and Optical Physics, 207 (Academic Press, 2010).Google Scholar
  19. 19.
    Rempe, G., Thompson, R. J., Kimble, H. J. & Lalezari, R. Measurement of ultralow losses in an optical interferometer. Opt. Lett. 17, 363 (1992).Google Scholar
  20. 20.
    Gangl, M. & Ritsch, H. Cold atoms in a high-\({Q}\) ring cavity. Phys. Rev. A 61, 043405 (2000).Google Scholar
  21. 21.
    Elsässer, T., Nagorny, B. & Hemmerich, A. Collective sideband cooling in an optical ring cavity. Phys. Rev. A 67, 051401 (2003).Google Scholar
  22. 22.
    Kruse, D. et al. Cold atoms in a high-\({Q}\) ring cavity. Phys. Rev. A 67, 051802 (2003).Google Scholar
  23. 23.
    Nagy, D., Asbóth, J. K.& Domokos, P. Collective cooling of atoms in a ring cavity. Acta Physica Hungarica B 26, 141 (2006).Google Scholar
  24. 24.
    Slama, S., Bux, S., Krenz, G., Zimmermann, C.& Courteille, P. W. Superradiant Rayleigh scattering and collective atomic recoil lasing in a ring cavity. Phys. Rev. Lett. 98, 053603 (2007).Google Scholar
  25. 25.
    Hemmerling, M.& Robb, G. R. M. Slowing atoms using optical cavities pumped by phase-modulated light. Phys. Rev. A 82, 053420 (2010).Google Scholar
  26. 26.
    Schulze, R. J., Genes, C.& Ritsch, H. Optomechanical approach to cooling of small polarizable particles in a strongly pumped ring cavity. Phys. Rev. A 81, 063820 (2010).Google Scholar
  27. 27.
    Niedenzu, W., Schulze, R., Vukics, A.& Ritsch, H. Microscopic dynamics of ultracold particles in a ring-cavity optical lattice. Phys. Rev. A 82, 043605 (2010).Google Scholar
  28. 28.
    Vuletić, V. Laser Physics at the Limits, Chap. Cavity Cooling with a Hot Cavity, 305 (Springer, 2001).Google Scholar
  29. 29.
    Salzburger, T.& Ritsch, H. Lasing and cooling in a finite-temperature cavity. Phys. Rev. A 74, 033806 (2006).Google Scholar
  30. 30.
    Huang, S.& Agarwal, G. S. Enhancement of cavity cooling of a micromechanical mirror using parametric interactions. Phys. Rev. A 79, 013821 (2009).Google Scholar
  31. 31.
    Kumar, T., Bhattacherjee, A. B.& ManMohan. Dynamics of a movable micromirror in a nonlinear optical cavity. Phys. Rev. A 81, 013835 (2010).Google Scholar
  32. 32.
    Bonifacio, R., De Salvo, L., Narducci, L. M.& D’Angelo, E. J. Exponential gain and self-bunching in a collective atomic recoil laser. Phys. Rev. A 50, 1716 (1994).Google Scholar
  33. 33.
    Xuereb, A., Freegarde, T.& Horak, P. Amplified optomechanics in a unidirectional ring cavity. J. Mod. Opt. 58, 1342 (2011).Google Scholar
  34. 34.
    Gardiner, C. W.& Zoller, P. Quantum Noise (Springer, 2004), third edn.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.University of SouthamptonBelfastUK

Personalised recommendations