Skip to main content

Applications of Transfer Matrices

  • Chapter
  • First Online:
Optical Cooling Using the Dipole Force

Part of the book series: Springer Theses ((Springer Theses))

  • 642 Accesses

Abstract

In this chapter, I will apply the transfer matrix method developed in Chap. 4 to novel cooling geometries outside cavities (Sects. 5.1 and 5.2), as well as inside active ring cavities (Sect.5.3).

[...] [T]he sciences do not try to explain, they hardly even try to interpret, they mainly make models. By a model is meant a mathematical construct which, with the addition of certain verbal interpretations, describes observed phenomena. The justification of such a mathematical construct is solely and precisely that it is expected to work [...].

J. von Neumann, Method in the Physical Sciences (1955)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Metzger, C. H. & Karrai, K. Cavity cooling of a microlever. Nature 432, 1002 (2004).

    Google Scholar 

  2. Arcizet, O., Cohadon, P. F., Briant, T., Pinard, M. & Heidmann, A. Radiation-pressure cooling and optomechanical instability of a micromirror. Nature 444, 71 (2006).

    Google Scholar 

  3. Gigan, S. et al. Self-cooling of a micromirror by radiation pressure. Nature 444, 67 (2006).

    Google Scholar 

  4. Schliesser, A., Rivière, R., Anetsberger, G., Arcizet, O. & Kippenberg, T. J. Resolved-sideband cooling of a micromechanical oscillator. Nature Phys. 4, 415 (2008).

    Google Scholar 

  5. Thompson, J. D. et al. Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature 452, 72 (2008).

    Google Scholar 

  6. Favero, I. & Karrai, K. Cavity cooling of a nanomechanical resonator by light scattering. New J. Phys. 10, 095006 (2008).

    Google Scholar 

  7. Xuereb, A., Domokos, P., Horak, P. & Freegarde, T. Cavity cooling of atoms: within and without a cavity. Eur. Phys. J. D 65, 273 (2011).

    Google Scholar 

  8. Horak, P., Hechenblaikner, G., Gheri, K. M., Stecher, H. & Ritsch, H. Cavity-induced atom cooling in the strong coupling regime. Phys. Rev. Lett. 79, 4974 (1997).

    Google Scholar 

  9. Leibrandt, D. R., Labaziewicz, J., Vuletić, V. & Chuang, I. L. Cavity sideband cooling of a single trapped ion. Phys. Rev. Lett. 103, 103001 (2009).

    Google Scholar 

  10. Koch, M. et al. Feedback cooling of a single neutral atom. Phys. Rev. Lett. 105, 173003 (2010).

    Google Scholar 

  11. Bhattacharya, M. & Meystre, P. Trapping and cooling a mirror to its quantum mechanical ground state. Phys. Rev. Lett. 99, 073601 (2007).

    Google Scholar 

  12. Domokos, P. & Ritsch, H. Mechanical effects of light in optical resonators. J. Opt. Soc. Am. B 20, 1098 (2003).

    Google Scholar 

  13. Mücke, M. et al. Electromagnetically induced transparency with single atoms in a cavity. Nature 465, 755 (2010).

    Google Scholar 

  14. Steck, D. A. Rubidium 85 D Line Data (2008). URL http://steck.us/alkalidata/rubidium85numbers.pdf. Rubidium 85 D Line Data.

  15. Xuereb, A., Freegarde, T., Horak, P. & Domokos, P. Optomechanical cooling with generalized interferometers. Phys. Rev. Lett. 105, 013602 (2010).

    Google Scholar 

  16. Braginsky, V. B. & Manukin, A. B. Ponderomotive effects of electromagnetic radiation. Sov. Phys. JETP 25, 653 (1967).

    Google Scholar 

  17. Gröblacher, S., Hammerer, K., Vanner, M. R. & Aspelmeyer, M. Observation of strong coupling between a micromechanical resonator and an optical cavity field. Nature 460, 724 (2009).

    Google Scholar 

  18. Schliesser, A. & Kippenberg, T. J. Cavity optomechanics with whispering-gallery mode optical micro-resonators. In Paul Berman, E. A. & Lin, C. (eds.) Advances In Atomic, Molecular, and Optical Physics, vol. 58 of Advances In Atomic, Molecular, and Optical Physics, 207 (Academic Press, 2010).

    Google Scholar 

  19. Rempe, G., Thompson, R. J., Kimble, H. J. & Lalezari, R. Measurement of ultralow losses in an optical interferometer. Opt. Lett. 17, 363 (1992).

    Google Scholar 

  20. Gangl, M. & Ritsch, H. Cold atoms in a high-\({Q}\) ring cavity. Phys. Rev. A 61, 043405 (2000).

    Google Scholar 

  21. Elsässer, T., Nagorny, B. & Hemmerich, A. Collective sideband cooling in an optical ring cavity. Phys. Rev. A 67, 051401 (2003).

    Google Scholar 

  22. Kruse, D. et al. Cold atoms in a high-\({Q}\) ring cavity. Phys. Rev. A 67, 051802 (2003).

    Google Scholar 

  23. Nagy, D., Asbóth, J. K.& Domokos, P. Collective cooling of atoms in a ring cavity. Acta Physica Hungarica B 26, 141 (2006).

    Google Scholar 

  24. Slama, S., Bux, S., Krenz, G., Zimmermann, C.& Courteille, P. W. Superradiant Rayleigh scattering and collective atomic recoil lasing in a ring cavity. Phys. Rev. Lett. 98, 053603 (2007).

    Google Scholar 

  25. Hemmerling, M.& Robb, G. R. M. Slowing atoms using optical cavities pumped by phase-modulated light. Phys. Rev. A 82, 053420 (2010).

    Google Scholar 

  26. Schulze, R. J., Genes, C.& Ritsch, H. Optomechanical approach to cooling of small polarizable particles in a strongly pumped ring cavity. Phys. Rev. A 81, 063820 (2010).

    Google Scholar 

  27. Niedenzu, W., Schulze, R., Vukics, A.& Ritsch, H. Microscopic dynamics of ultracold particles in a ring-cavity optical lattice. Phys. Rev. A 82, 043605 (2010).

    Google Scholar 

  28. Vuletić, V. Laser Physics at the Limits, Chap. Cavity Cooling with a Hot Cavity, 305 (Springer, 2001).

    Google Scholar 

  29. Salzburger, T.& Ritsch, H. Lasing and cooling in a finite-temperature cavity. Phys. Rev. A 74, 033806 (2006).

    Google Scholar 

  30. Huang, S.& Agarwal, G. S. Enhancement of cavity cooling of a micromechanical mirror using parametric interactions. Phys. Rev. A 79, 013821 (2009).

    Google Scholar 

  31. Kumar, T., Bhattacherjee, A. B.& ManMohan. Dynamics of a movable micromirror in a nonlinear optical cavity. Phys. Rev. A 81, 013835 (2010).

    Google Scholar 

  32. Bonifacio, R., De Salvo, L., Narducci, L. M.& D’Angelo, E. J. Exponential gain and self-bunching in a collective atomic recoil laser. Phys. Rev. A 50, 1716 (1994).

    Google Scholar 

  33. Xuereb, A., Freegarde, T.& Horak, P. Amplified optomechanics in a unidirectional ring cavity. J. Mod. Opt. 58, 1342 (2011).

    Google Scholar 

  34. Gardiner, C. W.& Zoller, P. Quantum Noise (Springer, 2004), third edn.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Xuereb .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Xuereb, A. (2012). Applications of Transfer Matrices. In: Optical Cooling Using the Dipole Force. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29715-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29715-1_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29714-4

  • Online ISBN: 978-3-642-29715-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics