The transfer matrix model

  • André Xuereb
Part of the Springer Theses book series (Springer Theses)


Chapter 2, and in particular Sect. 2.4, developed the necessary tools to describe the interaction of an atom with the electromagnetic field, as parametrised by the atoms characteristic polarisability. In one dimension, one can succinctly describe the fields interacting with a linear scatterer through what is called the transfer matrix approach [1]. Restricting ourselves to one spatial dimension is not an overly restrictive approximation, despite the quote at the beginning of this chapter; the formalism that is discussed in this chapter allows us to describe a wealth of physical situations. The purpose of this chapter is to extend this model significantly, enabling it to account for moving as well as static scatterers; this is done in Sect. 4.1 and the model that results is solved generally in Sect. 4.2. The extended model discussed here takes into account the first-order Doppler shift but not relativistic effects, and it is therefore correct only up to first order in the velocity of the scatterer.


Transfer Matrix Input Field Noise Mode Momentum Diffusion Optical Bloch Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Deutsch, I. H., Spreeuw, R. J. C., Rolston, S. L. & Phillips, W. D. Photonic band gaps in optical lattices. Phys. Rev. A 52, 1394 (1995).Google Scholar
  2. 2.
    Dalibard, J. & Cohen-Tannoudji, C. Laser cooling below the Doppler limit by polarization gradients: simple theoretical models. J. Opt. Soc. Am. B 6, 2023 (1989).Google Scholar
  3. 3.
    Asbóth, J. K., Ritsch, H. & Domokos, P. Optomechanical coupling in a one-dimensional optical lattice. Phys. Rev. A 77, 063424 (2008).Google Scholar
  4. 4.
    Wilson-Rae, I., Nooshi, N., Zwerger, W. & Kippenberg, T. J. Theory of ground state cooling of a mechanical oscillator using dynamical backaction. Phys. Rev. Lett. 99, 093901 (2007).Google Scholar
  5. 5.
    Marquardt, F., Chen, J. P., Clerk, A. A & Girvin, S. M. Quantum theory of cavity-assisted sideband cooling of mechanical motion. Phys. Rev. Lett. 99, 093902 (2007).Google Scholar
  6. 6.
    Genes, C., Vitali, D., Tombesi, P., Gigan, S. & Aspelmeyer, M. Ground-state cooling of a micromechanical oscillator: comparing cold damping and cavity-assisted cooling schemes. Phys. Rev. A 77, 033804 (2008).Google Scholar
  7. 7.
    Eschner, J., Raab, C., Schmidt-Kaler, F. & Blatt, R. Light interference from single atoms and their mirror images. Nature 413, 495 (2001).Google Scholar
  8. 8.
    Bushev, P., Wilson, A., Eschner, J., Raab, C., Schmidt-Kaler, F., Becher, C. & Blatt, R. Forces between a single atom and its distant mirror image. Phys. Rev. Lett. 92, 223602 (2004).Google Scholar
  9. 9.
    Xuereb, A., Horak, P. & Freegarde, T. Atom cooling using the dipole force of a single retroflected laser beam. Phys. Rev. A 80, 013836 (2009).Google Scholar
  10. 10.
    Xuereb, A., Domokos, P., Asboth, J., Horak, P., & Freegarde, T.Scattering theory of cooling and heating in opto-mechanical systems Phys. Rev. A 79, 053810 (2009).Google Scholar
  11. 11.
    Jackson, J. D. Classical Electrodynamics (Wiley, New York, 1998), third edn.Google Scholar
  12. 12.
    Castin, Y. & Mølmer, K. Atomic momentum diffusion in a \(\sigma _{+}{-}\sigma _{-}\) laser configuration: influence of an internal sublevel structure. J. Phys. B 23, 4101 (1990).Google Scholar
  13. 13.
    Glauber, R. J. Coherent and incoherent states of the radiation field. Phys. Rev. 131, 2766 (1963).Google Scholar
  14. 14.
    Gordon, J. P.& Ashkin, A. Motion of atoms in a radiation trap. Phys. Rev. A 21, 1606 (1980).Google Scholar
  15. 15.
    Bhattacharya, M., Uys, H.& Meystre, P. Optomechanical trapping and cooling of partially reflective mirrors. Phys. Rev. A 77, 033819 (2008).Google Scholar
  16. 16.
    Metcalf, H. J.& van der Straten, P. Laser cooling and trapping of atoms. J. Opt. Soc. Am. B 20, 887 (2003).Google Scholar
  17. 17.
    Horak, P.& Ritsch, H. Scaling properties of cavity-enhanced atom cooling. Phys. Rev. A 64, 033422 (2001).Google Scholar
  18. 18.
    Saulson, P. R. Thermal noise in mechanical experiments. Phys. Rev. D 42, 2437 (1990).Google Scholar
  19. 19.
    Cohadon, P. F., Heidmann, A.& Pinard, M. Cooling of a mirror by radiation pressure. Phys. Rev. Lett. 83, 3174 (1999).Google Scholar
  20. 20.
    Courty, J. M., Heidmann, A.& Pinard, M. Quantum limits of cold damping with optomechanical coupling. Eur. Phys. J. D 17, 399 (2001).Google Scholar
  21. 21.
    Vitali, D., Mancini, S., Ribichini, L.& Tombesi, P. Macroscopic mechanical oscillators at the quantum limit through optomechanical coupling. J. Opt. Soc. Am. B 20, 1054 (2003).Google Scholar
  22. 22.
    Xuereb, A., Freegarde, T., Horak, P.& Domokos, P. Optomechanical cooling with generalized interferometers. Phys. Rev. Lett. 105, 013602 (2010).Google Scholar
  23. 23.
    Bhattacharya, M.& Meystre, P. Trapping and cooling a mirror to its quantum mechanical ground state. Phys. Rev. Lett. 99, 073601 (2007).Google Scholar
  24. 24.
    Thompson, J. D., Zwickl, B. M., Jayich, A. M., Marquardt, F., Girvin, S. M.& Harris, J. G. E. Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature 452, 72 (2008).Google Scholar
  25. 25.
    Jayich, A. M., Sankey, J. C., Zwickl, B. M., Yang, C., Thompson, J. D., Girvin, S. M., Clerk, A. A., Marquardt, F.& Harris, J. G. E. Dispersive optomechanics: a membrane inside a cavity. New J. Phys. 10, 095008 (2008).Google Scholar
  26. 26.
    Sankey, J. C., Yang, C., Zwickl, B. M., Jayich, A. M.& Harris, J. G. E. Strong and tunable nonlinear optomechanical coupling in a low-loss system. Nat. Phys. 6, 707 (2010).Google Scholar
  27. 27.
    Horak, P., Hechenblaikner, G., Gheri, K. M., Stecher, H.& Ritsch, H. Cavity-induced atom cooling in the strong coupling regime. Phys. Rev. Lett 79, 4974 (1997).Google Scholar
  28. 28.
    Hechenblaikner, G., Gangl, M., Horak, P.& Ritsch, H. Cooling an atom in a weakly driven high-Q cavity. Phys. Rev. A 58, 3030 (1998).Google Scholar
  29. 29.
    Braginsky, V. Low quantum noise tranquilizer for Fabry-Perot interferometer. Phys. Lett. A 293, 228 (2002).Google Scholar
  30. 30.
    Nunnenkamp, A., Børkje, K., Harris, J. G. E.& Girvin, S. M. Cooling and squeezing via quadratic optomechanical coupling. Phys. Rev. A 82, 021806 (2010).Google Scholar
  31. 31.
    Clerk, A. A., Marquardt, F.& Harris, J. G. E. Quantum measurement of phonon shot noise. Phys. Rev. Lett. 104, 213603 (2010).Google Scholar
  32. 32.
    Xuereb, A., Domokos, P., Horak, P.& Freegarde, T. Scattering theory of multilevel atoms interacting with arbitrary radiation fields. Phys. Scr. T 140, 014010 (2010).Google Scholar
  33. 33.
    Spreeuw, R. J. C., Beijersbergen, M. W.& Woerdman, J. P. Optical ring cavities as tailored four-level systems: An application of the group U(2,2). Phys. Rev. A 45, 1213 (1992).Google Scholar
  34. 34.
    Cohen-Tannoudji, C. Atoms in strong resonant fields. In Balian, R., Haroche, S.& Liberman, S. (eds.) Frontiers in laser spectroscopy, Proceedings of the Les Houches Summer School, Session XXVII, 1 (North Holland, Amsterdam, 1977).Google Scholar
  35. 35.
    Siegman, A.E. Lasers (University Science Books, Sausalito, CA, 1990).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.University of SouthamptonBelfastUK

Personalised recommendations