Skip to main content

The transfer matrix model

  • Chapter
  • First Online:
Optical Cooling Using the Dipole Force

Part of the book series: Springer Theses ((Springer Theses))

  • 670 Accesses

Abstract

Chapter 2, and in particular Sect. 2.4, developed the necessary tools to describe the interaction of an atom with the electromagnetic field, as parametrised by the atoms characteristic polarisability. In one dimension, one can succinctly describe the fields interacting with a linear scatterer through what is called the transfer matrix approach [1]. Restricting ourselves to one spatial dimension is not an overly restrictive approximation, despite the quote at the beginning of this chapter; the formalism that is discussed in this chapter allows us to describe a wealth of physical situations. The purpose of this chapter is to extend this model significantly, enabling it to account for moving as well as static scatterers; this is done in Sect. 4.1 and the model that results is solved generally in Sect. 4.2. The extended model discussed here takes into account the first-order Doppler shift but not relativistic effects, and it is therefore correct only up to first order in the velocity of the scatterer.

The reader might wonder why it is of interest, physically, to consider \(n\)-manifolds for which \(n\) is larger than 4, since ordinary spacetime has just four dimensions. In fact many modern theories [...] operate within a ‘spacetime’ whose dimension is much larger than 4.

R. Penrose, The Road to Reality (2004)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This is a simplifying assumption and all our results also hold for a continuum of field modes.

  2. 2.

    This expression lacks the geometrical factor in Eq. (3.44); the reason for this is that the semiclassical treatment of a TLA is, strictly speaking, inconsistent with the assumption \(\operatorname{Im}\{\zeta \}=0\); the dominant term of the diffusion is then the first term in Eq. (4.20).

  3. 3.

    Note that Eq. (4.97) does not imply violation of the principle of conservation of energy; indeed, the matrix is not a transfer matrix and the \(\hat{E}\) mode is the same mode on either side of the equality.

  4. 4.

    We note that, whilst Eq. (4.129) is a general expression, the form of \(\varvec{\zeta }\) in this section has no nonzero off-diagonal terms, and only the first type of term contributes.

References

  1. Deutsch, I. H., Spreeuw, R. J. C., Rolston, S. L. & Phillips, W. D. Photonic band gaps in optical lattices. Phys. Rev. A 52, 1394 (1995).

    Google Scholar 

  2. Dalibard, J. & Cohen-Tannoudji, C. Laser cooling below the Doppler limit by polarization gradients: simple theoretical models. J. Opt. Soc. Am. B 6, 2023 (1989).

    Google Scholar 

  3. AsbĂ³th, J. K., Ritsch, H. & Domokos, P. Optomechanical coupling in a one-dimensional optical lattice. Phys. Rev. A 77, 063424 (2008).

    Google Scholar 

  4. Wilson-Rae, I., Nooshi, N., Zwerger, W. & Kippenberg, T. J. Theory of ground state cooling of a mechanical oscillator using dynamical backaction. Phys. Rev. Lett. 99, 093901 (2007).

    Google Scholar 

  5. Marquardt, F., Chen, J. P., Clerk, A. A & Girvin, S. M. Quantum theory of cavity-assisted sideband cooling of mechanical motion. Phys. Rev. Lett. 99, 093902 (2007).

    Google Scholar 

  6. Genes, C., Vitali, D., Tombesi, P., Gigan, S. & Aspelmeyer, M. Ground-state cooling of a micromechanical oscillator: comparing cold damping and cavity-assisted cooling schemes. Phys. Rev. A 77, 033804 (2008).

    Google Scholar 

  7. Eschner, J., Raab, C., Schmidt-Kaler, F. & Blatt, R. Light interference from single atoms and their mirror images. Nature 413, 495 (2001).

    Google Scholar 

  8. Bushev, P., Wilson, A., Eschner, J., Raab, C., Schmidt-Kaler, F., Becher, C. & Blatt, R. Forces between a single atom and its distant mirror image. Phys. Rev. Lett. 92, 223602 (2004).

    Google Scholar 

  9. Xuereb, A., Horak, P. & Freegarde, T. Atom cooling using the dipole force of a single retroflected laser beam. Phys. Rev. A 80, 013836 (2009).

    Google Scholar 

  10. Xuereb, A., Domokos, P., Asboth, J., Horak, P., & Freegarde, T.Scattering theory of cooling and heating in opto-mechanical systems Phys. Rev. A 79, 053810 (2009).

    Google Scholar 

  11. Jackson, J. D. Classical Electrodynamics (Wiley, New York, 1998), third edn.

    Google Scholar 

  12. Castin, Y. & Mølmer, K. Atomic momentum diffusion in a \(\sigma _{+}{-}\sigma _{-}\) laser configuration: influence of an internal sublevel structure. J. Phys. B 23, 4101 (1990).

    Google Scholar 

  13. Glauber, R. J. Coherent and incoherent states of the radiation field. Phys. Rev. 131, 2766 (1963).

    Google Scholar 

  14. Gordon, J. P.& Ashkin, A. Motion of atoms in a radiation trap. Phys. Rev. A 21, 1606 (1980).

    Google Scholar 

  15. Bhattacharya, M., Uys, H.& Meystre, P. Optomechanical trapping and cooling of partially reflective mirrors. Phys. Rev. A 77, 033819 (2008).

    Google Scholar 

  16. Metcalf, H. J.& van der Straten, P. Laser cooling and trapping of atoms. J. Opt. Soc. Am. B 20, 887 (2003).

    Google Scholar 

  17. Horak, P.& Ritsch, H. Scaling properties of cavity-enhanced atom cooling. Phys. Rev. A 64, 033422 (2001).

    Google Scholar 

  18. Saulson, P. R. Thermal noise in mechanical experiments. Phys. Rev. D 42, 2437 (1990).

    Google Scholar 

  19. Cohadon, P. F., Heidmann, A.& Pinard, M. Cooling of a mirror by radiation pressure. Phys. Rev. Lett. 83, 3174 (1999).

    Google Scholar 

  20. Courty, J. M., Heidmann, A.& Pinard, M. Quantum limits of cold damping with optomechanical coupling. Eur. Phys. J. D 17, 399 (2001).

    Google Scholar 

  21. Vitali, D., Mancini, S., Ribichini, L.& Tombesi, P. Macroscopic mechanical oscillators at the quantum limit through optomechanical coupling. J. Opt. Soc. Am. B 20, 1054 (2003).

    Google Scholar 

  22. Xuereb, A., Freegarde, T., Horak, P.& Domokos, P. Optomechanical cooling with generalized interferometers. Phys. Rev. Lett. 105, 013602 (2010).

    Google Scholar 

  23. Bhattacharya, M.& Meystre, P. Trapping and cooling a mirror to its quantum mechanical ground state. Phys. Rev. Lett. 99, 073601 (2007).

    Google Scholar 

  24. Thompson, J. D., Zwickl, B. M., Jayich, A. M., Marquardt, F., Girvin, S. M.& Harris, J. G. E. Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature 452, 72 (2008).

    Google Scholar 

  25. Jayich, A. M., Sankey, J. C., Zwickl, B. M., Yang, C., Thompson, J. D., Girvin, S. M., Clerk, A. A., Marquardt, F.& Harris, J. G. E. Dispersive optomechanics: a membrane inside a cavity. New J. Phys. 10, 095008 (2008).

    Google Scholar 

  26. Sankey, J. C., Yang, C., Zwickl, B. M., Jayich, A. M.& Harris, J. G. E. Strong and tunable nonlinear optomechanical coupling in a low-loss system. Nat. Phys. 6, 707 (2010).

    Google Scholar 

  27. Horak, P., Hechenblaikner, G., Gheri, K. M., Stecher, H.& Ritsch, H. Cavity-induced atom cooling in the strong coupling regime. Phys. Rev. Lett 79, 4974 (1997).

    Google Scholar 

  28. Hechenblaikner, G., Gangl, M., Horak, P.& Ritsch, H. Cooling an atom in a weakly driven high-Q cavity. Phys. Rev. A 58, 3030 (1998).

    Google Scholar 

  29. Braginsky, V. Low quantum noise tranquilizer for Fabry-Perot interferometer. Phys. Lett. A 293, 228 (2002).

    Google Scholar 

  30. Nunnenkamp, A., Børkje, K., Harris, J. G. E.& Girvin, S. M. Cooling and squeezing via quadratic optomechanical coupling. Phys. Rev. A 82, 021806 (2010).

    Google Scholar 

  31. Clerk, A. A., Marquardt, F.& Harris, J. G. E. Quantum measurement of phonon shot noise. Phys. Rev. Lett. 104, 213603 (2010).

    Google Scholar 

  32. Xuereb, A., Domokos, P., Horak, P.& Freegarde, T. Scattering theory of multilevel atoms interacting with arbitrary radiation fields. Phys. Scr. T 140, 014010 (2010).

    Google Scholar 

  33. Spreeuw, R. J. C., Beijersbergen, M. W.& Woerdman, J. P. Optical ring cavities as tailored four-level systems: An application of the group U(2,2). Phys. Rev. A 45, 1213 (1992).

    Google Scholar 

  34. Cohen-Tannoudji, C. Atoms in strong resonant fields. In Balian, R., Haroche, S.& Liberman, S. (eds.) Frontiers in laser spectroscopy, Proceedings of the Les Houches Summer School, Session XXVII, 1 (North Holland, Amsterdam, 1977).

    Google Scholar 

  35. Siegman, A.E. Lasers (University Science Books, Sausalito, CA, 1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Xuereb .

Appendix: Cavity Properties from the Transfer Matrix Model

Appendix: Cavity Properties from the Transfer Matrix Model

In this section we will derive a consistent set of relations used to describe cavities, based on the transfer matrix formalism. Specifically, we will relate the cavity HWHM linewidth \(\kappa \), its finesse \(\mathcal F \), and its \(Q\)-factor to one another and to the reflectivity of the cavity mirrors.

1.1 Cavity Finesse

The finesse of a cavity is defined as

$$\begin{aligned} \mathcal F =\frac{\Delta \lambda }{\delta \lambda }, \end{aligned}$$
(A.1)

where \(\delta \lambda \) is the FWHM linewidth of the cavity transmission peak and \(\Delta \lambda \) is the free spectral range (FSR) of the cavity. We model the cavity as a Fabry–Pérot resonator having mirrors of reflectivity \(r_1\) and \(r_2\) and a length \(L\). On resonance, we can find some integer \(n\) such that

$$\begin{aligned} L=\tfrac{1}{2}n\lambda . \end{aligned}$$
(A.2)

The FSR is defined [35] as the wavelength interval such that

$$\begin{aligned} L=\tfrac{1}{2}(n+1)(\lambda -\Delta \lambda ). \end{aligned}$$
(A.3)

We approximate \(\Delta \lambda \ll \lambda \), whereby

$$\begin{aligned} \Delta \lambda =\frac{\lambda ^2}{2L}. \end{aligned}$$
(A.4)

The cavity is described by the transfer matrix equation:

$$\begin{aligned} \left(\begin{array}{c} A\\ B \end{array}\right)= \frac{1}{t_1t_2} \left[\begin{array}{cc} t_1^2-r_1^2&r_1\\ -r_1&1 \end{array}\right] \left[\begin{array}{cc} e^{-\mathrm i kL}&0\\ 0&e^{\mathrm i kL} \end{array}\right] \left[\begin{array}{cc} t_2^2-r_2^2&r_2\\ -r_2&1 \end{array}\right] \left(\begin{array}{c} C\\ D \end{array}\right). \end{aligned}$$
(A.5)

We set \(C=0\) and write the transmitted field \(D\) in terms of the only input field, \(B\):

$$\begin{aligned} |D|^2=\frac{|t_1t_2|^2}{|1-|r_1r_2|\exp (2\mathrm i kL)|^2}|B|^2, \end{aligned}$$
(A.6)

where the phase shifts induced by \(r_1\) and \(r_2\) have been absorbed in \(L\). For a reasonably good cavity (\(|t_{1,2}|\ll 1\), \(\delta \lambda \ll \lambda \)), the transmission is therefore Lorentzian, with a FWHM linewidth

$$\begin{aligned} \delta \lambda =\frac{\lambda }{kL}\frac{1-|r_1r_2|}{\sqrt{|r_1r_2|}}. \end{aligned}$$
(A.7)

Finally, we substitute Eqs. (A.4) and (A.7) into Eq. (A.1) to obtain

$$\begin{aligned} \mathcal F =\frac{\pi \sqrt{|r_1r_2|}}{1-|r_1r_2|}. \end{aligned}$$
(A.8)

If the approximations \(|t_{1,2}|\ll 1\) and \(\delta \lambda \ll \lambda \) no longer hold, it can be similarly shown that Eq. (A.6) implies

$$\begin{aligned} \mathcal F =\frac{\pi /2}{\sin ^{-1}\biggl (\frac{1-|r_1r_2|}{2\sqrt{|r_1r_2|}}\biggr )}. \end{aligned}$$
(A.9)

1.2 Physical Meaning of the Cavity Finesse

The factor \(\rho =|r_1r_2|\) present in the above relations is related to the power lost by the cavity after one round-trip, \(1-\rho ^2\). Let us set \(N=\sqrt{\rho }/(1-\rho )\). The power remaining in the cavity after \(N\) round-trips is then

$$\begin{aligned} \rho ^{2N}=\rho ^{\frac{2\sqrt{\rho }}{1-\rho }}\rightarrow \frac{1}{e^2}, \end{aligned}$$
(A.10)

where we have taken the good-cavity (\(\rho \rightarrow 1\)) limit. In other words, we can write

$$\begin{aligned} \mathcal F =\pi N, \end{aligned}$$
(A.11)

where \(N\) is the number of round-trips the light makes inside the cavity before the intensity decays by a factor of \(1/e^2\).

1.3 Cavity Linewidth and Quality Factor

The HWHM cavity linewidth in frequency space can be defined in terms of the FWHM linewidth in wavelength space by means of the relation

$$\begin{aligned} 2\kappa =\frac{\omega }{\lambda }\,\delta \lambda , \end{aligned}$$
(A.12)

whereupon

$$\begin{aligned} \delta \lambda =\frac{\kappa \lambda ^2}{\pi c}, \end{aligned}$$
(A.13)

and substituting this expression for the linewidth into Eq. (A.1) gives

$$\begin{aligned} \mathcal F =\frac{\pi c}{2\kappa L},\;\text{ or}\;\mathcal \kappa =\frac{\pi c}{2\mathcal F L}. \end{aligned}$$
(A.14)

The quality factor, or \(Q\)-factor, is defined as the ratio of the cavity frequency to its FWHM linewidth in frequency space: \(Q=\omega /(2\kappa )\), or

$$\begin{aligned} Q=\frac{2\mathcal F L}{\lambda }. \end{aligned}$$
(A.15)

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Xuereb, A. (2012). The transfer matrix model. In: Optical Cooling Using the Dipole Force. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29715-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29715-1_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29714-4

  • Online ISBN: 978-3-642-29715-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics