Trapping and Cooling Atoms

  • André Xuereb
Part of the Springer Theses book series (Springer Theses)


The general description given previously of the forces acting on two-level atoms allows the exploration of a number of laser trapping and cooling configurations currently used. In particular, I will look at dipole traps in Sect. 3.1, optical molasses in Sect. 3.2, and the magneto-optical trap (MOT) in Sect. 3.3. Following these, I will discuss a more recent attempt at a generally applicable laser cooling method, so-called `mirror-mediated cooling', Sect. 3.6, which naturally lends itself to being extended in various ways, as shall be seen in Sect. 3.7 and Part II.


Friction Force Ring Cavity Cavity Field Harmonic Trap Pump Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Freegarde, T.& Dholakia, K. Cavity-enhanced optical bottle beam as a mechanical amplifier. Phys. Rev. A 66, 013413 (2002).Google Scholar
  2. 2.
    Dumke, R., Volk, M., Müther, T., Buchkremer, F. B. J., Birkl, G.& Ertmer, W. Micro-optical realization of arrays of selectively addressable dipole traps: A scalable configuration for quantum computation with atomic qubits. Phys. Rev. Lett. 89, 097903 (2002).Google Scholar
  3. 3.
    Mücke, M., Figueroa, E., Bochmann, J., Hahn, C., Murr, K., Ritter, S., Villas-Boas, C. J.& Rempe, G. Electromagnetically induced transparency with single atoms in a cavity. Nature 465, 755 (2010).Google Scholar
  4. 4.
    Rodrigo, P. J., Perch-Nielsen, I. R., Alonzo, C. A.& Glückstad, J. GPC-based optical micromanipulation in 3D real-time using a single spatial light modulator. Opt. Express 14, 13107 (2006).Google Scholar
  5. 5.
    Ashkin, A. Optical trapping and manipulation of neutral particles using lasers. Proc. Natl. Acad. Sci. 94, 4853 (1997).Google Scholar
  6. 6.
    Barrett, M. D., Sauer, J. A.& Chapman, M. S. All-optical formation of an atomic Bose-Einstein condensate. Phys. Rev. Lett. 87, 010404 (2001).Google Scholar
  7. 7.
    Chu, S., Hollberg, L., Bjorkholm, J. E., Cable, A.& Ashkin, A. Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure. Phys. Rev. Lett. 55, 48 (1985).Google Scholar
  8. 8.
    Gordon, J. P.& Ashkin, A. Motion of atoms in a radiation trap. Phys. Rev. A 21, 1606 (1980).Google Scholar
  9. 9.
    Steck, D. A. Rubidium 85 D Line Data (2008). Rubidium 85 D Line Data.
  10. 10.
    Aspect, A., Arimondo, E., Kaiser, R., Vansteenkiste, N.& Cohen-Tannoudji, C. Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping. Phys. Rev. Lett. 61, 826 (1988).Google Scholar
  11. 11.
    Leanhardt, A. E., Pasquini, T. A., Saba, M., Schirotzek, A., Shin, Y., Kielpinski, D., Pritchard, D. E.& Ketterle, W. Cooling Bose-Einstein condensates below 500 picokelvin. Science 301, 1513 (2003).Google Scholar
  12. 12.
    Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E.& Cornell, E. A. Observation of Bose-Einstein condensation in a dilute atomic vapor. Science 269, 198 (1995).Google Scholar
  13. 13.
    Davis, K. B., Mewes, M. O., Andrews, M. R., van Druten, N. J., Durfee, D. S., Kurn, D. M.& Ketterle, W. Bose-Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969 (1995).Google Scholar
  14. 14.
    Dalibard, J.& Cohen-Tannoudji, C. Laser cooling below the Doppler limit by polarization gradients: simple theoretical models. J. Opt. Soc. Am. B 6, 2023 (1989).Google Scholar
  15. 15.
    Lett, P. D., Watts, R. N., Westbrook, C. I., Phillips, W. D., Gould, P. L.& Metcalf, H. J. Observation of atoms laser cooled below the Doppler limit. Phys. Rev. Lett. 61, 169 (1988).Google Scholar
  16. 16.
    Ungar, P. J., Weiss, D. S., Riis, E.& Chu, S. Optical molasses and multilevel atoms: theory. J. Opt. Soc. Am. B 6, 2058 (1989).Google Scholar
  17. 17.
    Braginsky, V. B.& Manukin, A. B. Measurement of Weak Forces in Physics Experiments (University of Chicago, 1977), first edn.Google Scholar
  18. 18.
    Aspect, A., Dalibard, J., Heidmann, A., Salomon, C.& Cohen-Tannoudji, C. Cooling atoms with stimulated emission. Phys. Rev. Lett. 57, 1688 (1986).Google Scholar
  19. 19.
    Hechenblaikner, G., Gangl, M., Horak, P.& Ritsch, H. Cooling an atom in a weakly driven high-Q cavity. Phys. Rev. A 58, 3030 (1998).Google Scholar
  20. 20.
    Deutsch, I. H., Spreeuw, R. J. C., Rolston, S. L.& Phillips, W. D. Photonic band gaps in optical lattices. Phys. Rev. A 52, 1394 (1995).Google Scholar
  21. 21.
    Teo, C.& Scarani, V. Lenses as an atom-photon interface: A semiclassical model. Opt. Commun. 284, 4485 (2011).Google Scholar
  22. 22.
    Purcell, E. M. Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681 (1946).Google Scholar
  23. 23.
    Lewenstein, M.& Roso, L. Cooling of atoms in colored vacua. Phys. Rev. A 47, 3385 (1993).Google Scholar
  24. 24.
    Cirac, J. I., Parkins, A. S., Blatt, R.& Zoller, P. Cooling of a trapped ion coupled strongly to a quantized cavity mode. Opt. Commun. 97, 353 (1993).Google Scholar
  25. 25.
    Horak, P., Hechenblaikner, G., Gheri, K. M., Stecher, H.& Ritsch, H. Cavity-induced atom cooling in the strong coupling regime. Phys. Rev. Lett. 79, 4974 (1997).Google Scholar
  26. 26.
    Leibrandt, D. R., Labaziewicz, J., Vuletić, V.& Chuang, I. L. Cavity sideband cooling of a single trapped ion. Phys. Rev. Lett. 103, 103001 (2009).Google Scholar
  27. 27.
    Koch, M., Sames, C., Kubanek, A., Apel, M., Balbach, M., Ourjoumtsev, A., Pinkse, P. W. H.& Rempe, G. Feedback cooling of a single neutral atom. Phys. Rev. Lett. 105, 173003 (2010).Google Scholar
  28. 28.
    Barker, P. F.& Shneider, M. N. Cavity cooling of an optically trapped nanoparticle. Phys. Rev. A 81, 023826 (2010).Google Scholar
  29. 29.
    Romero-Isart, O., Pflanzer, A. C., Juan, M. L., Quidant, R., Kiesel, N., Aspelmeyer, M.& Cirac, J. I. Optically levitating dielectrics in the quantum regime: Theory and protocols. Phys. Rev. A 83, 013803 (2011).Google Scholar
  30. 30.
    Kippenberg, T. J.& Vahala, K. J. Cavity Optomechanics: Back-Action at the Mesoscale. Science 321, 1172 (2008).Google Scholar
  31. 31.
    Aspelmeyer, M., Gröblacher, S., Hammerer, K.& Kiesel, N. Quantum optomechanics—throwing a glance. J. Opt. Soc. Am. B 27, A189 (2010).Google Scholar
  32. 32.
    Li, T., Kheifets, S.& Raizen, M. G. Millikelvin cooling of an optically trapped microsphere in vacuum. Nat. Phys. 7, 527 (2011).Google Scholar
  33. 33.
    Gangl, M.& Ritsch, H. Cold atoms in a high-\({Q}\) ring cavity. Phys. Rev. A 61, 043405 (2000).Google Scholar
  34. 34.
    Elsässer, T., Nagorny, B.& Hemmerich, A. Collective sideband cooling in an optical ring cavity. Phys. Rev. A 67, 051401 (2003).Google Scholar
  35. 35.
    Nagy, D., Asbóth, J. K.& Domokos, P. Collective cooling of atoms in a ring cavity. Acta Phys. Hung. B 26, 141 (2006).Google Scholar
  36. 36.
    Hemmerling, M.& Robb, G. R. M. Slowing atoms using optical cavities pumped by phase-modulated light. Phys. Rev. A 82, 053420 (2010).Google Scholar
  37. 37.
    Schulze, R. J., Genes, C.& Ritsch, H. Optomechanical approach to cooling of small polarizable particles in a strongly pumped ring cavity. Phys. Rev. A 81, 063820 (2010).Google Scholar
  38. 38.
    Niedenzu, W., Schulze, R., Vukics, A.& Ritsch, H. Microscopic dynamics of ultracold particles in a ring-cavity optical lattice. Phys. Rev. A 82, 043605 (2010).Google Scholar
  39. 39.
    Kruse, D., Ruder, M., Benhelm, J., von Cube, C., Zimmermann, C., Courteille, P. W., Elsässer, T., Nagorny, B.& Hemmerich, A. Cold atoms in a high-\({Q}\) ring cavity. Phys. Rev. A 67, 051802 (2003).Google Scholar
  40. 40.
    Slama, S., Bux, S., Krenz, G., Zimmermann, C.& Courteille, P. W. Superradiant rayleigh scattering and collective atomic recoil lasing in a ring cavity. Phys. Rev. Lett. 98, 053603 (2007).Google Scholar
  41. 41.
    Vuletić, V. Laser Physics at the Limits, Chap. Cavity Cooling with a Hot Cavity, 305 (Springer, 2001).Google Scholar
  42. 42.
    Salzburger, T.& Ritsch, H. Lasing and cooling in a finite-temperature cavity. Phys. Rev. A 74, 033806 (2006).Google Scholar
  43. 43.
    Domokos, P.& Ritsch, H. Collective cooling and self-organization of atoms in a cavity. Phys. Rev. Lett. 89, 253003 (2002).Google Scholar
  44. 44.
    Baumann, K., Guerlin, C., Brennecke, F.& Esslinger, T. Dicke quantum phase transition with a superfluid gas in an optical cavity. Nature 464, 1301 (2010).Google Scholar
  45. 45.
    Bonifacio, R., De Salvo, L., Narducci, L. M.& D’Angelo, E. J. Exponential gain and self-bunching in a collective atomic recoil laser. Phys. Rev. A 50, 1716 (1994).Google Scholar
  46. 46.
    Zimmermann, C., Kruse, D., Cube, C. V., Slama, S., Deh, B.& Courteille, P. Collective atomic recoil lasing. J. Mod. Opt. 51, 957 (2004).Google Scholar
  47. 47.
    Xuereb, A., Horak, P.& Freegarde, T. Atom cooling using the dipole force of a single retroflected laser beam. Phys. Rev. A 80, 013836 (2009).Google Scholar
  48. 48.
    Horak, P., Xuereb, A.& Freegarde, T. Optical cooling of atoms in microtraps by time-delayed reflection. J. Comput. Theor. Nanosci. 7, 1747 (2010).Google Scholar
  49. 49.
    Gardiner, C. W. Adiabatic elimination in stochastic systems. I. Formulation of methods and application to few-variable systems. Phys. Rev. A 29, 2814 (1984).Google Scholar
  50. 50.
    Aljunid, S. A., Tey, M. K., Chng, B., Chen, Z., Lee, J., Liew, T., Maslennikov, G., Scarani, V.& Kurtsiefer, C. Substantial scattering of a weak coherent beam by a single atom. In 2009 Conference on Lasers and Electro-Optics and the XIth European Quantum Electronics Conference CLEO®/Europe-EQEC 2009, Munich, Germany, 89 (IEEE, 2009).Google Scholar
  51. 51.
    Gradshteyn, I. S.& Ryzhik, I. M. Table of integrals, series and products (Academic Press, 1994), fifth edn.Google Scholar
  52. 52.
    Cook, R. J. Theory of resonance-radiation pressure. Phys. Rev. A 22, 1078 (1980).Google Scholar
  53. 53.
    Cohen-Tannoudji, C. Atomic motion in laser light. In Dalibard, J., Zinn-Justin, J.& Raimond, J. M. (eds.) Fundamental Systems in Quantum Optics, Proceedings of the Les Houches Summer School, Session LIII, 1 (North Holland, 1992).Google Scholar
  54. 54.
    Berg-Sørensen, K., Castin, Y., Bonderup, E.& Mølmer, K. Momentum diffusion of atoms moving in laser fields. J. Phys. B 25, 4195 (1992).Google Scholar
  55. 55.
    Gardiner, C. W.& Zoller, P. Quantum Noise (Springer, 2004), third edn.Google Scholar
  56. 56.
    Horak, P.& Ritsch, H. Scaling properties of cavity-enhanced atom cooling. Phys. Rev. A 64, 033422 (2001).Google Scholar
  57. 57.
    Eschner, J., Raab, C., Schmidt-Kaler, F.& Blatt, R. Light interference from single atoms and their mirror images. Nature 413, 495 (2001).Google Scholar
  58. 58.
    Vuletić, V.& Chu, S. Laser cooling of atoms, ions, or molecules by coherent scattering. Phys. Rev. Lett. 84, 3787 (2000).Google Scholar
  59. 59.
    Maunz, P., Puppe, T., Schuster, I., Syassen, N., Pinkse, P. W. H.& Rempe, G. Cavity cooling of a single atom. Nature 428, 50 (2004).Google Scholar
  60. 60.
    Vilensky, M. Y., Prior, Y.& Averbukh, I. S. Cooling in a bistable optical cavity. Phys. Rev. Lett. 99, 103002 (2007).Google Scholar
  61. 61.
    Lev, B. L., Vukics, A., Hudson, E. R., Sawyer, B. C., Domokos, P., Ritsch, H.& Ye, J. Prospects for the cavity-assisted laser cooling of molecules. Phys. Rev. A 77, 023402 (2008).Google Scholar
  62. 62.
    Rempe, G., Thompson, R. J., Kimble, H. J.& Lalezari, R. Measurement of ultralow losses in an optical interferometer. Opt. Lett. 17, 363 (1992).Google Scholar
  63. 63.
    Mabuchi, H.& Kimble, H. J. Atom galleries for whispering atoms: binding atoms in stable orbits around an optical resonator. Opt. Lett. 19, 749 (1994).Google Scholar
  64. 64.
    Steck, D. A. Sodium D Line Data (2010). Sodium D Line Data.
  65. 65.
    Steck, D. A. Rubidium 87 D Line Data (2010). Rubidium 87 D Line Data.
  66. 66.
    Steck, D. A. Cesium D Line Data (2010). Cesium D Line Data.
  67. 67.
    Attocube systems AG. ANSxy50 Data Sheet (2010).Google Scholar
  68. 68.
    Thompson, J. D., Zwickl, B. M., Jayich, A. M., Marquardt, F., Girvin, S. M.& Harris, J. G. E. Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature 452, 72 (2008).Google Scholar
  69. 69.
    Jackson, J. D. Classical Electrodynamics (Wiley, 1998), third edn.Google Scholar
  70. 70.
    Karásek, V., Dholakia, K.& Zemánek, P. Analysis of optical binding in one dimension. Appl. Phys. B 84, 149 (2006).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.University of SouthamptonBelfastUK

Personalised recommendations