Abstract
In the preceeding chapters the laser field has been treated in the semi-classical approximation, where the electric field is represented by \(\varvec{E}=\varvec{E}_0\cos (\omega t)\). This assumption is adequate for considering the interaction between strong laser fields with macroscopic ensembles of independent atoms, as in this limit the quantum description of the light-field is indistinguishable from the classical treatment, for reasons that will be discussed below. However, in order to exploit the effect of the cooperative non-linearity at the single-photon level it is necessary to consider the quantised electromagnetic field, without which the concept of a photon becomes meaningless. Importantly, in quantum optics it is not the amplitude of the electric field, but rather the temporal and spatial correlations of the field that reveal the non-classical nature of light. Before considering the cooperative effect, it is necessary to first outline some fundamental ideas of the quantised field.
Keywords
Coherent State Optical Depth Probe Beam Photon Number Dipole TrapReferences
- 1.R. Loudon, The Quantum Theory of Light, 2nd edn. (OUP, Oxford, 1997)Google Scholar
- 2.V. Weisskopf, E. Wigner, Berechnung der natürlichen Linienbreite auf Grund der Diracschen Lichttheorie. Z. Phys. 63(1), 54 (1930)ADSMATHCrossRefGoogle Scholar
- 3.M.O. Scully, M.S. Zubairy, Quantum Optics (CUP, Cambridge, 2002)Google Scholar
- 4.H.C. Carmichael, Statistical Methods in Quantum Optics 1: Master Equations and Fokker-Planck Equations (Springer, Berlin, 2002)Google Scholar
- 5.R. Hanbury Brown, R.Q. Twiss, A test of a new type of stellar interferometer on sirius. Nature 178, 1046 (1956)ADSCrossRefGoogle Scholar
- 6.H.J. Kimble, M. Dagenais, L. Mandel, Photon antibunching in resonance fluorescence. Phys. Rev. Lett. 39(11), 691 (1977)ADSCrossRefGoogle Scholar
- 7.F. Diedrich, H. Walther, Nonclassical radiation of a single stored ion. Phys. Rev. Lett. 58(3), 203 (1987)ADSCrossRefGoogle Scholar
- 8.A. Imamoglu, H. Schmidt, G. Woods, M. Deutsch, Strongly interacting photons in a nonlinear cavity. Phys. Rev. Lett. 79(8), 1467 (1997)ADSCrossRefGoogle Scholar
- 9.K.M. Birnbaum, A. Boca, R. Miller, A.D. Boozer, T.E. Northup, H.J. Kimble, Photon blockade in an optical cavity with one trapped atom. Nature 436, 87 (2005)ADSCrossRefGoogle Scholar
- 10.B. Dayan, A.S. Parkins, T. Aoki, E.P. Ostby, K.J. Vahala, H.J. Kimball, A photon turnstile dynamically regulated by one atom. Science 319, 1062 (2008)ADSCrossRefGoogle Scholar
- 11.C. Lang, D. Bozyigit, C. Eichler, L. Steffen, J.M. Fink, A.A. Abdumalikov, M. Baur, S. Filipp, M.P. da Silva, A. Blais, A. Wallraff, Observation of resonant photon blockade at microwave frequencies using correlation function measurements. Phys. Rev. Lett. 106, 243601 (2011)ADSCrossRefGoogle Scholar
- 12.M. Fleischhauer, M.D. Lukin, Dark-state polaritons in electromagnetically induced transparency. Phys. Rev. Lett. 84(22), 5094 (2000)ADSCrossRefGoogle Scholar
- 13.M. Fleischhauer, A. Imamoglu, J. Marangos, Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys. 77, 633 (2005)ADSCrossRefGoogle Scholar
- 14.L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (CUP, Cambridge, 2008)Google Scholar
- 15.A. Imamoglu, Y. Yamamoto, Turnstile device for heralded single photons: Coulomb blockade of electron and hole tunneling in quantum confined p-i-n heterojunctions. Phys. Rev. Lett. 72(2), 210 (1994)ADSCrossRefGoogle Scholar
- 16.A.J. Shields, Semiconductor quantum light sources. Nature Photon. 1, 215 (2007)Google Scholar
- 17.M. Born, E. Wolf, Principles of Optics (CUP, Cambridge, 1999)Google Scholar
- 18.G.S. Agarwal, Quantum statistical theories of spontaneous emission and their relation to other approaches. Springer Tracts Mod. Phys. 70, 1 (1974)ADSCrossRefGoogle Scholar
- 19.K. Mølmer, Correlation functions and the quantum regression theorem. http://owww.phys.au.dk/quantop/kvanteoptik/qrtnote.pdf. Accessed 21 Nov 2010
- 20.K. Mølmer, Y. Castin, Monte Carlo wavefunctions in quantum optics. Quantum Semiclass Opt. 8(1), 49 (1996)ADSCrossRefGoogle Scholar
- 21.A. Gaëtan, Y. Miroshnychenko, T. Wilk, A. Chotia, M. Viteau, D. Comparat, P. Pillet, A. Browaeys, P. Grangier, Observation of collective excitation of two individual atoms in the Rydberg blockade regime. Nat. Phys. 5, 115 (2009)CrossRefGoogle Scholar
- 22.E. Urban, T.A. Johnson, T. Henage, L. Isenhower, D.D. Yavuz, T.G. Walker, M. Saffman, Observation of Rydberg blockade between two atoms. Nat. Phys. 5, 110 (2009)CrossRefGoogle Scholar