Photon Blockade

Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

In the preceeding chapters the laser field has been treated in the semi-classical approximation, where the electric field is represented by \(\varvec{E}=\varvec{E}_0\cos (\omega t)\). This assumption is adequate for considering the interaction between strong laser fields with macroscopic ensembles of independent atoms, as in this limit the quantum description of the light-field is indistinguishable from the classical treatment, for reasons that will be discussed below. However, in order to exploit the effect of the cooperative non-linearity at the single-photon level it is necessary to consider the quantised electromagnetic field, without which the concept of a photon becomes meaningless. Importantly, in quantum optics it is not the amplitude of the electric field, but rather the temporal and spatial correlations of the field that reveal the non-classical nature of light. Before considering the cooperative effect, it is necessary to first outline some fundamental ideas of the quantised field.

Keywords

Coherent State Optical Depth Probe Beam Photon Number Dipole Trap 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    R. Loudon, The Quantum Theory of Light, 2nd edn. (OUP, Oxford, 1997)Google Scholar
  2. 2.
    V. Weisskopf, E. Wigner, Berechnung der natürlichen Linienbreite auf Grund der Diracschen Lichttheorie. Z. Phys. 63(1), 54 (1930)ADSMATHCrossRefGoogle Scholar
  3. 3.
    M.O. Scully, M.S. Zubairy, Quantum Optics (CUP, Cambridge, 2002)Google Scholar
  4. 4.
    H.C. Carmichael, Statistical Methods in Quantum Optics 1: Master Equations and Fokker-Planck Equations (Springer, Berlin, 2002)Google Scholar
  5. 5.
    R. Hanbury Brown, R.Q. Twiss, A test of a new type of stellar interferometer on sirius. Nature 178, 1046 (1956)ADSCrossRefGoogle Scholar
  6. 6.
    H.J. Kimble, M. Dagenais, L. Mandel, Photon antibunching in resonance fluorescence. Phys. Rev. Lett. 39(11), 691 (1977)ADSCrossRefGoogle Scholar
  7. 7.
    F. Diedrich, H. Walther, Nonclassical radiation of a single stored ion. Phys. Rev. Lett. 58(3), 203 (1987)ADSCrossRefGoogle Scholar
  8. 8.
    A. Imamoglu, H. Schmidt, G. Woods, M. Deutsch, Strongly interacting photons in a nonlinear cavity. Phys. Rev. Lett. 79(8), 1467 (1997)ADSCrossRefGoogle Scholar
  9. 9.
    K.M. Birnbaum, A. Boca, R. Miller, A.D. Boozer, T.E. Northup, H.J. Kimble, Photon blockade in an optical cavity with one trapped atom. Nature 436, 87 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    B. Dayan, A.S. Parkins, T. Aoki, E.P. Ostby, K.J. Vahala, H.J. Kimball, A photon turnstile dynamically regulated by one atom. Science 319, 1062 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    C. Lang, D. Bozyigit, C. Eichler, L. Steffen, J.M. Fink, A.A. Abdumalikov, M. Baur, S. Filipp, M.P. da Silva, A. Blais, A. Wallraff, Observation of resonant photon blockade at microwave frequencies using correlation function measurements. Phys. Rev. Lett. 106, 243601 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    M. Fleischhauer, M.D. Lukin, Dark-state polaritons in electromagnetically induced transparency. Phys. Rev. Lett. 84(22), 5094 (2000)ADSCrossRefGoogle Scholar
  13. 13.
    M. Fleischhauer, A. Imamoglu, J. Marangos, Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys. 77, 633 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (CUP, Cambridge, 2008)Google Scholar
  15. 15.
    A. Imamoglu, Y. Yamamoto, Turnstile device for heralded single photons: Coulomb blockade of electron and hole tunneling in quantum confined p-i-n heterojunctions. Phys. Rev. Lett. 72(2), 210 (1994)ADSCrossRefGoogle Scholar
  16. 16.
    A.J. Shields, Semiconductor quantum light sources. Nature Photon. 1, 215 (2007)Google Scholar
  17. 17.
    M. Born, E. Wolf, Principles of Optics (CUP, Cambridge, 1999)Google Scholar
  18. 18.
    G.S. Agarwal, Quantum statistical theories of spontaneous emission and their relation to other approaches. Springer Tracts Mod. Phys. 70, 1 (1974)ADSCrossRefGoogle Scholar
  19. 19.
    K. Mølmer, Correlation functions and the quantum regression theorem. http://owww.phys.au.dk/quantop/kvanteoptik/qrtnote.pdf. Accessed 21 Nov 2010
  20. 20.
    K. Mølmer, Y. Castin, Monte Carlo wavefunctions in quantum optics. Quantum Semiclass Opt. 8(1), 49 (1996)ADSCrossRefGoogle Scholar
  21. 21.
    A. Gaëtan, Y. Miroshnychenko, T. Wilk, A. Chotia, M. Viteau, D. Comparat, P. Pillet, A. Browaeys, P. Grangier, Observation of collective excitation of two individual atoms in the Rydberg blockade regime. Nat. Phys. 5, 115 (2009)CrossRefGoogle Scholar
  22. 22.
    E. Urban, T.A. Johnson, T. Henage, L. Isenhower, D.D. Yavuz, T.G. Walker, M. Saffman, Observation of Rydberg blockade between two atoms. Nat. Phys. 5, 110 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Durham UniversityDurhamUK

Personalised recommendations