Advertisement

Experiment Setup

  • Jonathan D. Pritchard
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

There are two requirements for experimental observation of cooperative optical effects in Rydberg EIT due to dipole–dipole interactions. Firstly, a high atomic density is required to ensure a large optical depth on the probe transition whilst meeting the condition \(k^{\prime }R<1\), where \(k^{\prime }\) is the wave-vector for the Rydberg dipole; and secondly, the dipole–dipole interactions must dominate over any other dephasing mechanisms in the system such as collisional broadening or the Doppler shift. The Doppler effect is important as atoms moving at different velocities observe different laser frequencies. This can shift the blockaded-states back into resonance, leading to a significant reduction of the blockade size for room temperature samples [1].

Keywords

Probe Beam Probe Laser Rydberg State Laser Cool Atom Cloud 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    H. Kübler, J.P. Shaffer, T. Baluktsian, R. Löw, T. Pfau, Coherent excitation of Rydberg atoms in micrometre-sized atomic vapour cells. Nat. Photon. 4, 112 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    C.S. Adams, E. Riis, Laser cooling and trapping of neutral atoms. Prog. Quant. Electron. 21, 1 (1997)ADSCrossRefGoogle Scholar
  3. 3.
    W.R. Anderson, J.R. Veale, T.F. Gallagher, Resonant dipole–dipole energy transfer in a nearly frozen Rydberg gas. Phys. Rev. Lett. 80, 249 (1998)ADSCrossRefGoogle Scholar
  4. 4.
    I. Mourachko, D. Comparat, F. de Tomasi, A. Fioretti, P. Nosbaum, V.M. Akulin, P. Pillet, Many-body effects in a frozen Rydberg gas. Phys. Rev. Lett. 80, 253 (1998)ADSCrossRefGoogle Scholar
  5. 5.
    M. Mudrich, N. Zahzam, T. Vogt, D. Comparat, P. Pillet, Back and forth transfer and coherent coupling in a cold Rydberg dipole gas. Phys. Rev. Lett. 95, 233002 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    S. Westermann, T. Amthor, A.L. de Oliveira, J. Deiglmayr, M. Reetz-Lamour, M. Weidemuller, Dynamics of resonant energy transfer in a cold Rydberg gas. Eur. Phys. J. D 40, 37 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    J.A. Petrus, P. Bohlouli-Zanjani, J.D.D. Martin, ac electric-field-induced resonant energy transfer between cold Rydberg atoms. J. Phys. B 41, 245001 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    T. Amthor, M. Reetz-Lamour, S. Westermann, J. Denskat, M. Weidemüller, Mechanical effect of van der waals interactions observed in real time in an ultracold Rydberg gas. Phys. Rev. Lett. 98, 023004 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    T. Amthor, M. Reetz-Lamour, C. Giese, M. Weidemüller, Modeling many-particle mechanical effects of an interacting Rydberg gas. Phys. Rev. A 76, 054702 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    D. Tong, S.M. Farooqi, J. Stanojevic, S. Krishnan, Y.P. Zhang, R. Côté, E.E. Eyler, P.L. Gould, Local blockade of Rydberg excitation in an ultracold gas. Phys. Rev. Lett. 93, 063001 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    K. Singer, M. Reetz-Lamour, T. Amthor, L.G. Marcassa, M. Weidemüller, Suppression of excitation and spectral broadening induced by interactions in a cold gas of Rydberg atoms. Phys. Rev. Lett. 93, 163001 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    K. Afrousheh, P. Bohlouli-Zanjani, D. Vagale, A. Mugford, M. Fedorov, J.D.D. Martin, Spectroscopic observation of resonant electric dipole–dipole interactions between cold Rydberg atoms. Phys. Rev. Lett. 93, 233001 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    T. Cubel Liebisch, A. Reinhard, P.R. Berman, G. Raithel, Atom counting statistics in ensembles of interacting Rydberg atoms. Phys. Rev. Lett. 95, 253002 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    T. Vogt, M. Viteau, J. Zhao, A. Chotia, D. Comparat, P. Pillet, Dipole blockade at förster resonances in high resolution laser excitation of Rydberg states of cesium atoms. Phys. Rev. Lett. 97, 083003 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    T. Vogt, M. Viteau, A. Chotia, J. Zhao, D. Comparat, P. Pillet, Electric-field induced dipole blockade with Rydberg atoms. Phys. Rev. Lett. 99, 073002 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    C.S.E. van Ditzhuijzen, A.F. Koenderink, J.V. Hernández, F. Robicheaux, L.D. Noordam, H.B. van Linden van den Heuvell, Spatially resolved observation of dipole–dipole interaction between Rydberg atoms. Phys. Rev. Lett. 100, 243201 (2008)Google Scholar
  17. 17.
    R. Heidemann, U. Raitzsch, V. Bendkowsky, B. Butscher, R. Low, T. Pfau, Rydberg excitation of Bose-Einstein condensates. Phys. Rev. Lett. 100, 033601 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    E. Urban, T.A. Johnson, T. Henage, L. Isenhower, D.D. Yavuz, T.G. Walker, M. Saffman, Observation of Rydberg blockade between two atoms. Nat. Phys. 5, 110 (2009)CrossRefGoogle Scholar
  19. 19.
    A. Gaëtan, Y. Miroshnychenko, T. Wilk, A. Chotia, M. Viteau, D. Comparat, P. Pillet, A. Browaeys, P. Grangier, Observation of collective excitation of two individual atoms in the Rydberg blockade regime. Nat. Phys. 5, 115 (2009)CrossRefGoogle Scholar
  20. 20.
    V. Bendkowsky, B. Butscher, J. Nipper, J.P. Shaffer, R. Löw, T. Pfau, Observation of ultralong-range Rydberg molecules. Nature 458, 1005 (2009)Google Scholar
  21. 21.
    K.R. Overstreet, A. Schwettmann, J. Tallant, D. Booth, J.P. Shaffer, Observation of electric-field-induced Cs Rydberg atom macrodimers. Nat. Phys. 5, 581 (2009)CrossRefGoogle Scholar
  22. 22.
    W. Li, I. Mourachko, M.W. Noel, T.F. Gallagher, Millimeter-wave spectroscopy of cold Rb Rydberg atoms in a magneto-optical trap: Quantum defects of the ns, np and nd series. Phys. Rev. A 67, 052502 (2003)ADSCrossRefGoogle Scholar
  23. 23.
    J. Han, Y. Jamil, D.V.L. Norum, P.J. Tanner, T.F. Gallagher, Rb nf quantum defects from millimeter-wave spectroscopy of cold \(^{85}\)Rb Rydberg atoms. Phys. Rev. A 74, 054502 (2006)ADSCrossRefGoogle Scholar
  24. 24.
    B. Sanguinetti, H.O. Majeed, M.L. Jones, B.T.H. Varcoe, Precision measurements of quantum defects in the \(n\)P\(_{3/2}\) Rydberg states of \(^{85}\)Rb. J. Phys. B 42, 165004 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    D.B. Tretyakov, I.I. Beterov, V.M. Entin, I.I. Ryabtsev, P.L. Chapovsky, Investigation of cold Rb Rydberg atoms in a magneto-optical trap. J. Expt. Th. Phys. 108, 374 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    D.B. Branden, T. Juhasz, T. Mahlokozera, C. Vesa, R.O. Wilson, M. Zheng, A. Kortyna, D.A. Tate, Radiative lifetime measurements of rubidium Rydberg states. J. Phys. B 43, 015002 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    K.J. Weatherill, A CO2 Laser Lattice Experiment for Cold Atoms. PhD thesis, Department of Physics, Durham University, 2007Google Scholar
  28. 28.
    E.L. Raab, M. Prentiss, A. Cable, S. Chu, D.E. Pritchard, Trapping of neutral sodium atoms with radiation pressure. Phys. Rev. Lett. 59, 2631 (1987)Google Scholar
  29. 29.
    C.J. Foot, Atomic Physics (OUP, Oxford, 2005)zbMATHGoogle Scholar
  30. 30.
    A.M. Steane, C.J. Foot, Laser cooling below the doppler limit in a magneto-optical trap. Europhys. Lett. 14, 231 (1991)ADSCrossRefGoogle Scholar
  31. 31.
    D.A. Steck, Rubidium 85 D line data (2008), http://steck.us/alkalidata/rubidium85numbers.pdf
  32. 32.
    D.A. Steck, Rubidium 87 D line data (2007), http://steck.us/alkalidata/rubidium87numbers.pdf
  33. 33.
    D.J. McCarron, S.A. King, S.L. Cornish, Modulation transfer spectroscopy in atomic rubidium. Meas. Sci. Technol. 19, 105601 (2008)ADSCrossRefGoogle Scholar
  34. 34.
    K.L. Corwin, Z.-T. Lu, C.F. Hand, R.J. Epstein, C.E. Wieman, Frequency-stabilized diode laser with the Zeeman shift in an atomic vapor. Appl. Opt. 37, 3295 (1998)ADSCrossRefGoogle Scholar
  35. 35.
    U. Volz, H. Schmoranzer, Precision lifetime measurements on alkali atoms and on helium by beam-gas-laser spectroscopy. Phys. Scr. T65, 48 (1996)ADSCrossRefGoogle Scholar
  36. 36.
    C.G. Townsend, N.H. Edwards, C.J. Cooper, K.P. Zetie, C.J. Foot, A.M. Steane, P. Szriftgiser, H. Perrin, J. Dalibard, Phase-space density in the magneto-optical trap. Phys. Rev. A 52, 1423 (1995)ADSCrossRefGoogle Scholar
  37. 37.
    A. Arnold, Preparation and Manipulation of an \(^{87}\)Rb Bose-Einstein Condensate. PhD thesis, University of Sussex, 1999Google Scholar
  38. 38.
    P.D. Lett, W.D. Phillips, S.L. Rolston, C.E. Tanner, R.N. Watts, C.I. Westbrook, Optical molasses. J. Opt. Soc. Am. B 6, 2084 (1989)ADSCrossRefGoogle Scholar
  39. 39.
    J. Dalibard, C. Cohen-Tannoudji, Laser cooling below the Doppler limit by polarisation gradients: simple theoretical models. J. Opt. Soc. Am. B 6, 2023 (1989)ADSCrossRefGoogle Scholar
  40. 40.
    C.D. Wallace, T.P. Dinneen, K.Y.N. Tan, A. Kumarakrishnan, P. Gould, J. Javanainen, Measurements of temperature and spring constant in a magneto-optical trap. J. Opt. Soc. Am. B 11, 703 (1994)ADSCrossRefGoogle Scholar
  41. 41.
    T.G. Walker, M. Saffman, Zeros of Rydberg–Rydberg förster interactions. J. Phys. B 38, S309 (2005)ADSCrossRefGoogle Scholar
  42. 42.
    T.G. Walker, M. Saffman, Consequences of Zeeman degeneracy for the van der Waals blockade between Rydberg atoms. Phys. Rev. A 77, 032723 (2008)ADSCrossRefGoogle Scholar
  43. 43.
    B.H. Bransden, C.J. Joachain, Physics of Atoms and Molecules (Longman Scientific and Technical, London, 1983Google Scholar
  44. 44.
    A.L. Migdall, J.V. Prodan, W.D. Phillips, T.H. Bergeman, H.J. Metcalf, First observation of magnetically trapped neutral atoms. Phys. Rev. Lett. 54, 2596 (1985)ADSCrossRefGoogle Scholar
  45. 45.
    A. Reinhard, T. Cubel Liebisch, B. Knuffman, G. Raithel, Level shifts of rubidium Rydberg states due to binary interactions. Phys. Rev. A 75, 032712 (2007)ADSCrossRefGoogle Scholar
  46. 46.
    R.P. Abel, A.K. Mohapatra, M.G. Bason, J.D. Pritchard, K.J. Weatherill, U. Raitzsch, C.S. Adams, Laser frequency stabilization to excited state transitions using electromagnetically induced transparency in a cascade system. Appl. Phys. Lett. 94, 071107 (2009)ADSCrossRefGoogle Scholar
  47. 47.
    R.W.P. Drever, J.L. Hall, F.V. Kowalski, J. Hough, G.M. Ford, A.J. Munley, H. Ward, Laser phase and frequency stabilization using an optical resonator. Appl. Phys. B 31, 97 (1983)ADSCrossRefGoogle Scholar
  48. 48.
    K. Singer, S. Jochim, M. Mudrich, A. Mosk, M. Weidemüller, Low-cost mechanical shutter for light beams. Rev. Sci. Inst. 73, 4403 (2002)ADSCrossRefGoogle Scholar
  49. 49.
    I.G. Hughes, T.P.A. Hase, Measurements and Their Uncertainties: A Practical Guide to Modern Error Analysis (OUP, Oxford, 2010)Google Scholar
  50. 50.
    P. Siddons, C.S. Adams, C. Ge, I.G. Hughes, Absolute absorption on rubidium D lines: comparison between theory and experiment. J. Phys. B 41, 155004 (2008)ADSCrossRefGoogle Scholar
  51. 51.
    J. Ye, S. Swartz, P. Jungner, J.L. Hall, Hyperfine structure and absolute frequency of the \(^{87}\)Rb \(5P_{3/2}\) state. Opt. Lett. 21, 1280 (1996)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Durham UniversityDurhamUK

Personalised recommendations