Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 773 Accesses

Abstract

As discussed in the introduction, the strong dipole–dipole interactions of the Rydberg states make them ideal for studying quantum many body physics, and applications in quantum information [1]. One of the main advantages of Rydberg atoms over other dipolar systems, such as polar molecules [2, 3], is the ability to control the strength, sign and spatial dependence through choice of state, in addition to be being able to turn the interactions off by returning population to the ground state. This chapter outlines the principle behind dipole interactions of the Rydberg states, detailing the properties of the \(S_{1/2}\) and \(D_{5/2}\)states of rubidium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Saffman, T.G. Walker, K. Mølmer, Quantum information with Rydberg atoms. Rev. Mod. Phys. 82(3), 2313 (2010)

    Article  ADS  Google Scholar 

  2. D. DeMille, Quantum computation with trapped polar molecules. Phys. Rev. Lett. 88(6), 067901 (2002)

    Article  ADS  Google Scholar 

  3. R.M. Rajapakse, T. Bragdon, A.M. Rey, T. Calarco, S.F. Yelin, Single-photon nonlinearities using arrays of cold polar molecules. Phys. Rev. A 80(1), 013810 (2009)

    Article  ADS  Google Scholar 

  4. P. Hertz, Ăśber den gegenseitigen durchschnittlichen Abstand von Punkten, die mit bekannter mittlerer Dichte im Raume angeordnet sind. Math. Ann. 67, 387 (1909)

    Article  MathSciNet  MATH  Google Scholar 

  5. T. Amthor, J. Denskat, C. Giese, N.N. Bezuglov, A. Ekers, L. Cederbaum, M. Weidemuller, Autoionization of an ultracold Rydberg gas through resonant dipole coupling. Eur. Phys. J. D. 53(3), 329 (2009)

    Article  ADS  Google Scholar 

  6. T. Amthor. Interaction–Induced dynamics in ultracold Rydberg gases—mechanical effects and coherent processes. Ph.D. Thesis, Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität Freiburg, 2008

    Google Scholar 

  7. T.G. Walker, M. Saffman, Consequences of Zeeman degeneracy for the van der Waals blockade between Rydberg atoms. Phys. Rev. A 77(3), 032723 (2008)

    Article  ADS  Google Scholar 

  8. K. Singer, J. Stanojevic, M. Weidemüller, R. Coté, Long-range interactions between alkali Rydberg atom pairs correlated to the ns–ns, np–np and nd–nd asymptotes. J. Phys. B 38(2), S295 (2005)

    Article  ADS  Google Scholar 

  9. A. Reinhard, T. Cubel Liebisch, B. Knuffman, G. Raithel, Level shifts of rubidium Rydberg states due to binary interactions. Phys. Rev. A 75(3), 032712 (2007)

    Article  ADS  Google Scholar 

  10. T.F. Gallagher, K.A. Safinya, F. Gounand, J.F. Delpech, W. Sandner, R. Kachru, Resonant Rydberg-atom—Rydberg-atom collisions. Phys. Rev. A 25(4), 1905 (1982)

    Article  ADS  Google Scholar 

  11. T. Vogt, M. Viteau, J. Zhao, A. Chotia, D. Comparat, P. Pillet, Dipole blockade at Förster resonances in high resolution laser excitation of Rydberg states of cesium atoms. Phys. Rev. Lett. 97(8), 083003 (2006)

    Article  ADS  Google Scholar 

  12. A. Schwettmann, K.R. Overstreet, J. Tallant, J.P. Shaffer, Analysis of long-range Cs Rydberg potential wells. J. Mod. Opt. 54(17), 2551 (2007)

    Article  MATH  Google Scholar 

  13. K.R. Overstreet, A. Schwettmann, J. Tallant, D. Booth, J.P. Shaffer, Observation of electric-field-induced Cs Rydberg atom macrodimers. Nature Phys. 5, 581 (2009)

    Article  ADS  Google Scholar 

  14. S.H. Autler, C.H. Townes, Stark effect in rapidly varying fields. Phys. Rev. 100(2), 703 (1955)

    Article  ADS  Google Scholar 

  15. T.F. Gallagher, P. Pillet, Dipole–dipole interactions of Rydberg atoms. Adv. At. Mol. Opt. Phys. 56, 161 (2008)

    Article  ADS  Google Scholar 

  16. W. Li, P.J. Tanner, T.F. Gallagher, Dipole–dipole excitation and ionization in an ultracold gas of Rydberg atoms. Phys. Rev. Lett. 94(17), 173001 (2005)

    Article  ADS  Google Scholar 

  17. T. Amthor, M. Reetz-Lamour, S. Westermann, J. Denskat, M. WeidemĂĽller, Mechanical effect of van der Waals interactions observed in real time in an ultracold Rydberg gas. Phys. Rev. Lett. 98(2), 023004 (2007)

    Article  ADS  Google Scholar 

  18. M.P. Robinson, B. Tolra, B. Laburthe, M.W. Noel, T.F. Gallagher, P. Pillet, Spontaneous evolution of Rydberg atoms into an ultracold plasma. Phys. Rev. Lett. 85(21), 4466 (2000)

    Article  ADS  Google Scholar 

  19. W. Li, P.J. Tanner, Y. Jamil, T.F. Gallagher, Ionization and plasma formation in high n cold Rydberg samples. Eur. Phys. J. D. 40(1), 27 (2006)

    Article  ADS  Google Scholar 

  20. T. Amthor, M. Reetz-Lamour, C. Giese, M. WeidemĂĽller, Modeling many-particle mechanical effects of an interacting Rydberg gas. Phys. Rev. A 76(5), 054702 (2007)

    Article  ADS  Google Scholar 

  21. T. Amthor, C. Giese, C.S. Hofmann, M. WeidemĂĽller, Evidence of antiblockade in an ultracold Rydberg gas. Phys. Rev. Lett. 104, 013001 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan D. Pritchard .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pritchard, J.D. (2012). Rydberg Atom Interactions . In: Cooperative Optical Non-Linearity in a Blockaded Rydberg Ensemble. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29712-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29712-0_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29711-3

  • Online ISBN: 978-3-642-29712-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics