• Jonathan D. Pritchard
Part of the Springer Theses book series (Springer Theses)


The ability to manipulate the properties of light propagating through a medium was first discovered by Faraday [1] in 1846, who rotated the polarisation of light in lead glass using an external magnetic field. Similar observations were made by Kerr in 1875 [2] using a static electric field. However, with the advent of lasers in 1960 [3], the high optical intensities made it possible to modify the optical properties using the electric field of the light itself.


Electromagnetically Induce Transparency Rydberg State Quantum Gate Rydberg Atom Phase Gate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    M. Faraday, Experimental Researches in Electricity. Phil. Trans. R. Soc. Lond. 136, 1 (1846)CrossRefGoogle Scholar
  2. 2.
    J. Kerr, A new relation between electricity and light: dielectrified media birefringent. Phil. Mag. 50, 337 (1875)Google Scholar
  3. 3.
    T.H. Maiman, Stimulated optical radiation in ruby. Nature 187, 493 (1960)ADSCrossRefGoogle Scholar
  4. 4.
    R.W. Boyd, Nonlinear Optics, 3rd edn. (Academic Press, San Diego, 2008)Google Scholar
  5. 5.
    H. Schmidt, A. Imamoglu, Giant Kerr nonlinearities obtained by electromagnetically induced transparency. Opt. Lett. 21(23), 1936 (1996)ADSCrossRefGoogle Scholar
  6. 6.
    M.D. Lukin, A. Imamoglu, Nonlinear optics and quantum entanglement of ultraslow single photons. Phys. Rev. Lett. 84(7), 1419 (2000)ADSCrossRefGoogle Scholar
  7. 7.
    M.D. Lukin, Colloquium: trapping and manipulating photon states in atomic ensembles. Rev. Mod. Phys. 75(2), 457 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (CUP, Cambridge, 2005)Google Scholar
  9. 9.
    L.K. Grover, Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79(2), 325 (1997)ADSCrossRefGoogle Scholar
  10. 10.
    P.W. Shor, Polynomial—time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26, 1484 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    D.P. DiVincenzo, D. Bacon, J. Kempe, G. Burkard, K.B. Whaley, Universal quantum computation with the exchange interaction. Nature 408, 339 (2000)ADSCrossRefGoogle Scholar
  12. 12.
    N. Matsuda, R. Shimizu, Y. Mitsumori, H. Kosaka, K. Edamatsu, Observation of optical-fibre Kerr nonlinearity at the single-photon level. Nature Photon. 3, 95 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    M. Fleischhauer, A. Imamoglu, J. Marangos, Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys. 77, 633 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    E. Knill, R. Laflamme, G.J. Milburn, A scheme for efficient quantum computation with linear optics. Nature 409, 46 (2001)ADSCrossRefGoogle Scholar
  15. 15.
    T.B. Pittman, B.C. Jacobs, J.D. Franson, Demonstration of nondeterministic quantum logic operations using linear optical elements. Phys. Rev. Lett. 88(25), 257902 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    L. O’Brien, G.J. Pryde, A.G. White, T.C. Ralph, D. Branning, Demonstration of an all—optical quantum controlled—NOT gate. Nature 426, 264 (2003)ADSCrossRefGoogle Scholar
  17. 17.
    S. Gasparoni, J.-W. Pan, P. Walther, T. Rudolph, A. Zeilinger, Realization of a photonic controlled—NOT gate sufficient for quantum computation. Phys. Rev. Lett. 93(2), 020504 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    K. Sanaka, T. Jennewein, J.-W. Pan, K. Resch, A. Zeilinger, Experimental nonlinear sign shift for linear optics quantum computation. Phys. Rev. Lett. 92(1), 017902 (2004)ADSCrossRefGoogle Scholar
  19. 19.
    T.B. Pittman, B.C. Jacobs, J.D. Franson, Experimental demonstration of a quantum circuit using linear optics gates. Phys. Rev. A 71(3), 032307 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    Q.A. Turchette, C.J. Hood, W. Lange, H. Mabuchi, H.J. Kimble, Measurement of conditional phase shifts for quantum logic. Phys. Rev. Lett. 75(25), 4710 (1995)MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    A. Rauschenbeutel, P. Bertet, S. Osnaghi, G. Nogues, M. Brune, J.M. Raimond, S. Haroche, Controlled entanglement of two field modes in a cavity quantum electrodynamics experiment. Phys. Rev. A 64(5), 050301 (2001)ADSCrossRefGoogle Scholar
  22. 22.
    S.E. Harris, J.E. Field, A. Imamoglu, Nonlinear optical processes using electromagnetically induced transparency. Phys. Rev. Lett. 64(10), 1107 (1990)ADSCrossRefGoogle Scholar
  23. 23.
    K.-J. Boller, A. Imamoglu, S.E. Harris, Observation of electromagnetically induced transparency. Phys. Rev. Lett. 66(20), 2593 (1991)ADSCrossRefGoogle Scholar
  24. 24.
    L.V. Hau, S.E. Harris, Z. Dutton, C.H. Behroozi, Light Speed reduction to 17 metres per second in an ultracold atomic gas. Nature 397, 594 (1999)ADSCrossRefGoogle Scholar
  25. 25.
    D. Budker, D.F. Kimball, S.M. Rochester, V.V. Yashchuk, Nonlinear magneto-optics and reduced group velocity of light in atomic vapor with slow ground state relaxation. Phys. Rev. Lett. 83(9), 1767 (1999)ADSCrossRefGoogle Scholar
  26. 26.
    C. Liu, Z. Dutton, C.H. Behroozi, L.V. Hau, Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature 409, 490 (2001)ADSCrossRefGoogle Scholar
  27. 27.
    D.F. Phillips, A. Fleischhauer, A. Mair, R.L. Walsworth, M.D. Lukin, Storage of light in atomic vapor. Phys. Rev. Lett. 86(5), 783 (2001)ADSCrossRefGoogle Scholar
  28. 28.
    M. Fleischhauer, M.D. Lukin, Dark-state polaritons in electromagnetically induced transparency. Phys. Rev. Lett. 84(22), 5094 (2000)ADSCrossRefGoogle Scholar
  29. 29.
    C. Simon et al., Quantum memories. Eur. Phys. J. D. 58, 1 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    M.D. Eisaman, A. André, F. Massou, M. Fleischhauer, A.S. Zibrov, M.D. Lukin, Electromagnetically induced transparency with tunable single-photon pulses. Nature 438, 837 (2005)ADSCrossRefGoogle Scholar
  31. 31.
    T. Chanelière, D.N. Matsukevich, S.D. Jenkins, S.-Y. Lan, T.A.B. Kennedy, A. Kuzmich, Storage and retrieval of single photons transmitted between remote quantum memories. Nature 438, 833 (2005)ADSCrossRefGoogle Scholar
  32. 32.
    J.H. Shapiro, Single-photon Kerr nonlinearities do not help quantum computation. Phys. Rev. A 73(6), 062305 (2006)ADSCrossRefGoogle Scholar
  33. 33.
    J. Gea-Banacloche, Impossibility of large phase shifts via the giant Kerr effect with single-photon wave packets. Phys. Rev. A 81(4), 043823 (2010)ADSCrossRefGoogle Scholar
  34. 34.
    A.V. Gorshkov, J. Otterbach, E. Demler, M. Fleischhauer, M.D. Lukin, Photonic phase gate via an exchange of fermionic spin waves in a spin chain. Phys. Rev. Lett. 105(6), 060502 (2010)ADSCrossRefGoogle Scholar
  35. 35.
    R.H. Dicke, Coherence in spontaneous radiation processes. Phys. Rev. 93(1), 99 (1954)ADSzbMATHCrossRefGoogle Scholar
  36. 36.
    M. Gross, S. Haroche, Superradiance: an essay on the theory of collective spontaneous emission. Phys. Rep. 93(5), 301 (1982)ADSCrossRefGoogle Scholar
  37. 37.
    S. Inouye, A.P. Chikkatur, D.M. Stamper-Kurn, J. Stenger, D.E. Pritchard, W. Ketterle, Superradiant Rayleigh scattering from a Bose–Einstein condensate. Science 285(5427), 571 (1999)CrossRefGoogle Scholar
  38. 38.
    M.P. Hehlen, H.U. Güdel, Q. Shu, J. Rai, S. Rai, S.C. Rand, Cooperative bistability in dense, excited atomic systems. Phys. Rev. Lett. 73(8), 1103 (1994)ADSCrossRefGoogle Scholar
  39. 39.
    T.F. Gallagher, Rydberg Atoms (CUP, New York, 2005)Google Scholar
  40. 40.
    M.D. Lukin, M. Fleischhauer, R. Cote, L.M. Duan, D. Jaksch, J.I. Cirac, P. Zoller, Dipole blockade and quantum information processing in mesoscopic atomic ensembles. Phys. Rev. Lett. 87(3), 037901 (2001)ADSCrossRefGoogle Scholar
  41. 41.
    W.R. Anderson, J.R. Veale, T.F. Gallagher, Resonant dipole–dipole energy transfer in a nearly Frozen Rydberg gas. Phys. Rev. Lett. 80(2), 249 (1998)ADSCrossRefGoogle Scholar
  42. 42.
    M. Mudrich, N. Zahzam, T. Vogt, D. Comparat, P. Pillet, Back and forth transfer and coherent coupling in a cold Rydberg dipole gas. Phys. Rev. Lett. 95(23), 233002 (2005)ADSCrossRefGoogle Scholar
  43. 43.
    S. Westermann, T. Amthor, A.L. de Oliveira, J. Deiglmayr, M. Reetz-Lamour, M. Weidemuller, Dynamics of resonant energy transfer in a cold Rydberg gas. Eur. Phys. J. D. 40, 37 (2006)ADSCrossRefGoogle Scholar
  44. 44.
    J.A. Petrus, P. Bohlouli-Zanjani, J.D.D. Martin, ac electric-field-induced resonant energy transfer between cold Rydberg atoms. J. Phys. B 41, 245001 (2008)ADSCrossRefGoogle Scholar
  45. 45.
    T. Amthor, M. Reetz-Lamour, S. Westermann, J. Denskat, M. Weidemüller, Mechanical effect of van der Waals interactions observed in real time in an ultracold Rydberg gas. Phys. Rev. Lett. 98(2), 023004 (2007)ADSCrossRefGoogle Scholar
  46. 46.
    T. Amthor, M. Reetz-Lamour, C. Giese, M. Weidemüller, Modeling many-particle mechanical effects of an interacting Rydberg gas. Phys. Rev. A 76(5), 054702 (2007)ADSCrossRefGoogle Scholar
  47. 47.
    J. Dieglmayr, M. Reetz-Lamour, T. Amthor, S. Westermann, A.L. de Oliveira, M. Weidemüller, Coherent excitation of Rydberg atoms in an ultracold gas. Opt. Comm. 264, 293 (2006)ADSCrossRefGoogle Scholar
  48. 48.
    M. Reetz-Lamour, J. Deiglmayr, T. Amthor, M. Weidemüller, Rabi oscillations between ground and Rydberg states and van der Waals blockade in a mesoscopic frozen Rydberg gas. New J. Phys. 10(4), 045026 (2008)ADSCrossRefGoogle Scholar
  49. 49.
    T.A. Johnson, E. Urban, T. Henage, L. Isenhower, D.D. Yavuz, T.G. Walker, M. Saffman, Rabi oscillations between ground and Rydberg states with dipole–dipole atomic interactions. Phys. Rev. Lett. 100(11), 113003 (2008)ADSCrossRefGoogle Scholar
  50. 50.
    D. Tong, S.M. Farooqi, J. Stanojevic, S. Krishnan, Y.P. Zhang, R. Côté, E.E. Eyler, P.L. Gould, Local blockade of Rydberg excitation in an ultracold gas. Phys. Rev. Lett. 93(6), 063001 (2004)ADSCrossRefGoogle Scholar
  51. 51.
    K. Singer, M. Reetz-Lamour, T. Amthor, L.G. Marcassa, M. Weidemüller, Suppression of excitation and spectral broadening induced by interactions in a cold gas of Rydberg atoms. Phys. Rev. Lett. 93(16), 163001 (2004)ADSCrossRefGoogle Scholar
  52. 52.
    K. Afrousheh, P. Bohlouli-Zanjani, D. Vagale, A. Mugford, M. Fedorov, J.D.D. Martin, Spectroscopic observation of resonant electric dipole–dipole interactions between cold Rydberg atoms. Phys. Rev. Lett. 93(23), 233001 (2004)ADSCrossRefGoogle Scholar
  53. 53.
    T. Cubel Liebisch, A. Reinhard, P.R. Berman, G. Raithel, Atom counting statistics in ensembles of interacting Rydberg atoms. Phys. Rev. Lett. 95(25), 253002 (2005)ADSCrossRefGoogle Scholar
  54. 54.
    T. Vogt, M. Viteau, J. Zhao, A. Chotia, D. Comparat, P. Pillet, Dipole blockade at Förster resonances in high resolution laser excitation of Rydberg states of cesium atoms. Phys. Rev. Lett. 97(8), 083003 (2006)ADSCrossRefGoogle Scholar
  55. 55.
    T. Vogt, M. Viteau, A. Chotia, J. Zhao, D. Comparat, P. Pillet, Electric-field induced dipole blockade with Rydberg atoms. Phys. Rev. Lett. 99(7), 073002 (2007)ADSCrossRefGoogle Scholar
  56. 56.
    C.S.E. van Ditzhuijzen, A.F. Koenderink, J.V. Hernández, F. Robicheaux, L.D. Noordam, H.B. van Linden, van den Heuvell, Spatially resolved observation of dipole–dipole interaction between Rydberg atoms. Phys. Rev. Lett. 100(24), 243201 (2008)Google Scholar
  57. 57.
    R. Heidemann, U. Raitzsch, V. Bendkowsky, B. Butscher, R. Low, L. Santos, T. Pfau, Evidence for coherent collective Rydberg excitation in the strong blockade regime. Phys. Rev. Lett. 99(16), 163601 (2007)ADSCrossRefGoogle Scholar
  58. 58.
    E. Urban, T.A. Johnson, T. Henage, L. Isenhower, D.D. Yavuz, T.G. Walker, M. Saffman, Observation of Rydberg blockade between two atoms. Nature Phys. 5, 110 (2009)ADSCrossRefGoogle Scholar
  59. 59.
    A. Gaëtan, Y. Miroshnychenko, T. Wilk, A. Chotia, M. Viteau, D. Comparat, P. Pillet, A. Browaeys, P. Grangier, Observation of collective excitation of two individual atoms in the Rydberg blockade regime. Nature Phys. 5, 115 (2009)ADSCrossRefGoogle Scholar
  60. 60.
    D. Jaksch, J.I. Cirac, P. Zoller, Fast quantum gates for neutral atoms. Phys. Rev. Lett. 85(10), 2208 (2000)ADSCrossRefGoogle Scholar
  61. 61.
    D. Møller, L.B. Madsen, K. Mølmer, Quantum gates and multiparticle entanglement by Rydberg excitation blockade and adiabatic passage. Phys. Rev. Lett. 100(17), 170504 (2008)CrossRefGoogle Scholar
  62. 62.
    M. Müller, I. Lesanovsky, H. Weimer, H.P. Büchler, P. Zoller, Mesoscopic Rydberg gate based on electromagnetically induced transparency. Phys. Rev. Lett. 102(17), 170502 (2009)CrossRefGoogle Scholar
  63. 63.
    H. Weimer, M. Müller, I. Lesanovsky, P. Zoller, H.P. Büchler, A Rydberg quantum simulator. Nature Phys. 6, 382 (2010)Google Scholar
  64. 64.
    T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko, P. Grangier, A. Browaeys, Entanglement of two individual neutral atoms using Rydberg blockade. Phys. Rev. Lett. 104(1), 010502 (2010)ADSCrossRefGoogle Scholar
  65. 65.
    L. Isenhower, E. Urban, X.L. Zhang, A.T. Gill, T. Henage, T.A. Johnson, T.G. Walker, M. Saffman, Demonstration of a neutral atom controlled-NOT quantum gate. Phys. Rev. Lett. 104(1), 010503 (2010)ADSCrossRefGoogle Scholar
  66. 66.
    G. Pupillo, A. Micheli, M. Boninsegni, I. Lesanovsky, P. Zoller, Strongly correlated gases of Rydberg-dressed atoms: quantum and classical dynamics. Phys. Rev. Lett. 104(22), 223002 (2010)ADSCrossRefGoogle Scholar
  67. 67.
    T. Pohl, E. Demler, M.D. Lukin, Dynamical crystallization in the dipole blockade of ultracold atoms. Phys. Rev. Lett. 104(4), 043002 (2010)ADSCrossRefGoogle Scholar
  68. 68.
    H. Weimer, R. Löw, T. Pfau, H.P. Büchler, Quantum critical behavior in strongly interacting Rydberg gases. Phys. Rev. Lett. 101(25), 250601 (2008)ADSCrossRefGoogle Scholar
  69. 69.
    F. Cinti, P. Jain, M. Boninsegni, A. Micheli, P. Zoller, G. Pupillo, Supersolid droplet crystal in a dipole-blockaded gas. Phys. Rev. Lett. 105(13), 135301 (2010)ADSCrossRefGoogle Scholar
  70. 70.
    M. Saffman, T.G. Walker, Creating single-atom and single-photon sources from entangled atomic ensembles. Phys. Rev. A 66, 065403 (2002)ADSCrossRefGoogle Scholar
  71. 71.
    L.H. Pedersen, K. Mølmer, Few qubit atom—light interfaces with collective encoding. Phys. Rev. A 79(1), 012320 (2009)ADSCrossRefGoogle Scholar
  72. 72.
    A.E.B. Nielsen, K. Mølmer, Deterministic multi-mode photonic device for quantum information processing. Phys. Rev. A 81, 043822 (2010)ADSCrossRefGoogle Scholar
  73. 73.
    J. Honer, R. Löw, H. Weimer, T. Pfau, H.P. Büchler, Artificial atoms can do more than atoms: deterministic single photon subtraction from arbitrary light fields. Phys. Rev. Lett. 107, 093601 (2011)ADSCrossRefGoogle Scholar
  74. 74.
    I. Friedler, D. Petrosyan, M. Fleischhauer, G. Kurizki, Long-range interactions and entanglement of slow single-photon pulses. Phys. Rev. A 72, 043803 (2005)ADSCrossRefGoogle Scholar
  75. 75.
    E. Shahmoon, G. Kurizki, M. Fleischhauer, D. Petrosyan, Strongly interacting photons in hollow-core waveguides. Phys. Rev. A 83, 033806 (2011)ADSCrossRefGoogle Scholar
  76. 76.
    H. Kübler, J.P. Shaffer, T. Baluktsian, R. Löw, T. Pfau, Coherent excitation of Rydberg atoms in micrometre-sized atomic vapour cells. Nature Photon. 4, 112 (2010)ADSCrossRefGoogle Scholar
  77. 77.
    A.K. Mohapatra, T.R. Jackson, C.S. Adams, Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency. Phys. Rev. Lett. 98(11), 113003 (2007)ADSCrossRefGoogle Scholar
  78. 78.
    S. Mauger, J. Millen, M.P.A. Jones, Spectroscopy of strontium Rydberg states using electromagnetically induced transparency. J. Phys. B 40(22), F319 (2007)ADSCrossRefGoogle Scholar
  79. 79.
    R.P. Abel, A.K. Mohapatra, M.G. Bason, J.D. Pritchard, K.J. Weatherill, U. Raitzsch, C.S. Adams, Laser frequency stabilization to excited state transitions using electromagnetically induced transparency in a cascade system. Appl. Phys. Lett. 94(7), 071107 (2009)ADSCrossRefGoogle Scholar
  80. 80.
    K.J. Weatherill, J.D. Pritchard, R.P. Abel, M.G. Bason, A.K. Mohapatra, C.S. Adams, Electromagnetically induced transparency of an interacting cold Rydberg ensemble. J. Phys. B 41(20), 201002 (2008)ADSCrossRefGoogle Scholar
  81. 81.
    M.G. Bason, A.K. Mohapatra, K.J. Weatherill, C.S. Adams, Electro—optic control of atom—light interactions using Rydberg dark-state polaritons. Phys. Rev. A 77, 032305 (2008)ADSCrossRefGoogle Scholar
  82. 82.
    M.G. Bason, M. Tanasittikosol, A. Sargsyan, A.K. Mohapatra, D. Sarkisyan, R.M. Potvliege, C.S. Adams, Enhanced electric field sensitivity of rf-dressed Rydberg dark states. New J. Phys. 12, 065015 (2010)ADSCrossRefGoogle Scholar
  83. 83.
    A. Tauschinsky, R.M.T. Thijssen, S. Whitlock, H.B. van Linden van den Heuvell, R.J.C. Spreeuw, Spatially resolved excitation of Rydberg atoms and surface effects on an atom chip. Phys. Rev. A 81, 063411 (2010)Google Scholar
  84. 84.
    U. Raitzsch, R. Heidemann, H. Weimer, V. Bendkowsky, B. Butscher, P. Kollmann, R. Löw, H.P. Büchler, T. Pfau, Investigation of dephasing rates in an interacting Rydberg gas. New J. Phys. 11, 055014 (2009)ADSCrossRefGoogle Scholar
  85. 85.
    J.D. Pritchard, D. Maxwell, A. Gauguet, K.J. Weatherill, M.P.A. Jones, C.S. Adams, Cooperative atom—light interaction in a blockaded Rydberg ensemble. Phys. Rev. Lett. 105(19), 193603 (2010)ADSCrossRefGoogle Scholar
  86. 86.
    C. Ates, S. Sevilçi, T. Pohl, Electromagnetically induced transparency in strongly interacting Rydberg gases. Phys. Rev. A 83(4), 041802 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Durham UniversityDurhamUK

Personalised recommendations