Online Pricing for Multi-type of Items

  • Yong Zhang
  • Francis Y. L. Chin
  • Hing-Fung Ting
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7285)


In this paper, we study the problem of online pricing for bundles of items. Given a seller with k types of items, m of each, a sequence of users {u 1, u 2, ...} arrives one by one. Each user is single-minded, i.e., each user is interested only in a particular bundle of items. The seller must set the price and assign some amount of bundles to each user upon his/her arrival. Bundles can be sold fractionally. Each u i has his/her value function v i (·) such that v i (x) is the highest unit price u i is willing to pay for x bundles. The objective is to maximize the revenue of the seller by setting the price and amount of bundles for each user. In this paper, we first show that the lower bound of the competitive ratio for this problem is Ω(logh + logk), where h is the highest unit price to be paid among all users. We then give a deterministic online algorithm, Pricing, whose competitive ratio is \(O(\sqrt{k}\cdot\log h\log k)\). When k = 1 the lower and upper bounds asymptotically match the optimal result O(logh).


Competitive Ratio Online Algorithm Total Revenue Unit Price Price Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Balcan, N., Blum, A., Mansour, Y.: Item pricing for revenue maximization. In: Proc. of the 9th ACM Conference on Electronic Commerce (EC 2008), pp. 50–59 (2008)Google Scholar
  2. 2.
    Bansal, N., Chen, N., Cherniavsky, N., Rurda, A., Schieber, B., Sviridenko, M.: Dynamic pricing for impatient bidders. ACM Transactions on Algorithms 6(2) (March 2010)Google Scholar
  3. 3.
    Briest, P.: Uniform Budgets and the Envy-Free Pricing Problem. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 808–819. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Briest, P., Krysta, P.: Buying cheap is expensive: hardness of non-parametric multi-product pricing. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans, Louisiana, January 07-09, pp. 716–725 (2007)Google Scholar
  5. 5.
    Chen, N., Deng, X.: Envy-Free Pricing in Multi-item Markets. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 418–429. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Chen, N., Ghosh, A., Vassilvitskii, S.: Optimal envy-free pricing with metric substitutability. In: Proc. of the 9th ACM Conference on Electronic Commerce (EC 2008), pp. 60–69 (2008)Google Scholar
  7. 7.
    Cheung, M., Swamy, C.: Approximation Algorithms for Single-minded Envy-free Profit-maximization Problems with Limited Supply. In: Proc. of 49th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2008), pp. 35–44 (2008)Google Scholar
  8. 8.
    Elbassioni, K., Raman, R., Ray, S., Sitters, R.: On Profit-Maximizing Pricing for the Highway and Tollbooth Problems. In: Proceedings of the 2nd International Symposium on Algorithmic Game Theory, Paphos, Cyprus, October 18-20, pp. 275–286 (2009)Google Scholar
  9. 9.
    Elbassioni, K., Sitters, R., Zhang, Y.: A Quasi-PTAS for Profit-Maximizing Pricing on Line Graphs. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 451–462. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Fiat, A., Wingarten, A.: Envy, Multi Envy, and Revenue Maximization. In: Leonardi, S. (ed.) WINE 2009. LNCS, vol. 5929, pp. 498–504. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Grigoriev, A., van Loon, J., Sitters, R.A., Uetz, M.: How to Sell a Graph: Guidelines for Graph Retailers. In: Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 125–136. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Guruswami, V., Hartline, J., Karlin, A., Kempe, D., Kenyon, C., McSherry, F.: On Profit-Maximizing Envy-Free Pricing. In: Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2005), pp. 1164–1173 (2005)Google Scholar
  13. 13.
    Im, S., Lu, P., Wang, Y.: Envy-Free Pricing with General Supply Constraints. In: Saberi, A. (ed.) WINE 2010. LNCS, vol. 6484, pp. 483–491. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Krauthgamer, R., Mehta, A., Rudra, A.: Pricing commodities. Theoretical Computer Science 412(7), 602–613 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Zhang, Y., Chin, F.Y.L., Ting, H.-F.: Competitive Algorithms for Online Pricing. In: Fu, B., Du, D.-Z. (eds.) COCOON 2011. LNCS, vol. 6842, pp. 391–401. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Yong Zhang
    • 1
    • 2
  • Francis Y. L. Chin
    • 2
  • Hing-Fung Ting
    • 2
  1. 1.Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesChina
  2. 2.Department of Computer ScienceThe University of Hong KongHong Kong

Personalised recommendations