On Envy-Free Pareto Efficient Pricing

Part of the Lecture Notes in Computer Science book series (LNCS, volume 7285)


In a centralized combinatorial market, the market maker has a number of items for sale to potential consumers, who wish to purchase their preferred items. Different solution concepts (allocations of items to players) capture different perspectives in the market. Our focus is to balance three properties: revenue maximization from the market maker’s perspective, fairness from consumers’ perspective, and efficiency from the market’s global perspective.

Most well-known solution concepts capture only one or two properties, e.g., Walrasian equilibrium requires fairness for consumers and uses market clearance to guarantee efficiency but ignores revenue for the market maker. Revenue maximizing envy-free pricing balances market maker’s revenue and consumer’s fairness, but ignores efficiency.

In this paper, we study a solution concept, envy-free Pareto efficient pricing, that lies between Walrasian equilibrium and envy-free pricing. It requires fairness for consumers and balances efficiency and revenue. We study envy-free Pareto efficient pricing in two domains, unit-demand and single-minded consumers, and analyze its existence, computation, and economic properties.


Nash Equilibrium Social Welfare Optimal Allocation Solution Concept Market Output 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Balcan, M., Blum, A., Mansour, Y.: Item Pricing for Revenue Maximization. In: EC 2008, pp. 50–59 (2008)Google Scholar
  2. 2.
    Bouveret, S., Lang, J.: Efficiency and Envy-Freeness in Fair Division of Indivisible Goods: Logical Representation and Complexity. In: IJCAI 2005, pp. 935–940 (2005)Google Scholar
  3. 3.
    Briest, P.: Uniform Budgets and the Envy-Free Pricing Problem. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 808–819. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Chen, N., Deng, X., Sun, X.: On Complexity of Single-Minded Auction. Journal of Computer and System Sciences 69(4), 675–687 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Chen, N., Ghosh, A., Vassilvitskii, S.: Optimal Envy-Free Pricing with Metric Substitutability. SIAM Journal on Computing 40(3), 623–645 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Chen, X., Deng, X., Teng, S.H.: Settling the Complexity of Computing Two-Player Nash Equilibria. Journal of the ACM 56(3) (2009)Google Scholar
  7. 7.
    Clarke, E.H.: Multipart Pricing of Public Goods. Public Choice 11, 17–33 (1971)CrossRefGoogle Scholar
  8. 8.
    Conitzer, V., Sandholm, T.: Complexity Results about Nash Equilibria. In: IJCAI 2003, pp. 765–771 (2003)Google Scholar
  9. 9.
    Cramton, P., Shoham, Y., Steinberg, R.: Combinatorial Auctions. MIT Press (2006)Google Scholar
  10. 10.
    Crawford, V., Knoer, E.: Job Matching with Heterogeneous Firms and Workers. Econometrica 49(2), 437–450 (1981)zbMATHCrossRefGoogle Scholar
  11. 11.
    Daskalakis, C., Goldberg, P., Papadimitriou, C.: The complexity of computing a Nash equilibrium. SIAM Journal on Computing 39(1), 195–259 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Demange, G., Gale, D.: The Strategy of Two-Sided Matching Markets. Econometrica 53, 873–888 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Groves, T.: Incentives in Teams. Econometrica 41, 617–631 (1973)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Gul, F., Stacchetti, E.: Walrasian Equilibrium with Gross Substitutes. Journal of Economic Theory 87, 95–124 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Guruswami, V., Hartline, J., Karlin, A., Kempe, D., Kenyon, C., McSherry, F.: On Profit-Maximizing Envy-Free Pricing. In: SODA 2005, pp. 1164–1173 (2005)Google Scholar
  16. 16.
    Kelso, A., Crawford, V.: Job Matching, Coalition Formation, and Gross Substitutes. Econometrica 50, 1483–1504 (1982)zbMATHCrossRefGoogle Scholar
  17. 17.
    Mas-Colell, A., Whinston, M., Green, J.: Microeconomic Theory. Oxford University Press (1995)Google Scholar
  18. 18.
    Pazner, E., Schmeidler, D.: A Difficulty in the Concept of Fairness. Rev. Econ. Studies 41, 441–443 (1974)CrossRefGoogle Scholar
  19. 19.
    Quinzii, M.: Core and Competitive Equilibria with Indivisibilities. International Journal of Game Theory 13, 41–60 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Shapley, L., Shubik, M.: The Assignment Game I: The Core. International Journal of Game Theory 1(1), 111–130 (1971)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Varian, H.: Equity, Envy, and Efficiency. Journal of Economic Theory 9, 63–91 (1974)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Vickrey, W.: Counterspeculation, Auctions and Competitive Sealed Tenders. Journal of Finance 16, 8–37 (1961)CrossRefGoogle Scholar
  23. 23.
    Walras, L.: Elements of Pure Economics, 1877. Harvard University Press (1954)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Xia Hua
    • 1
  1. 1.School of Physical and Mathematical SciencesNanyang Technological UniversitySingapore

Personalised recommendations