Advertisement

Voronoi Diagram with Visual Restriction

  • Chenglin Fan
  • Jun Luo
  • Wencheng Wang
  • Binhai Zhu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7285)

Abstract

In a normal Voronoi diagram, each site is able to see all the points in the plane. In this paper, we study the case such that each site is only able to see a visually restricted region in the plane and construct the so-called Visual Restriction Voronoi Diagram (VRVD). We show that the visual restriction Voronoi cell of each site is not necessary convex and it could consist of many disjoint regions. We prove that the combinatorial complexity of the VRVD on n sites is Θ(n 2). Then we give an O(n 2logn) time and O(n 2) space algorithm to construct VRVD.

Keywords

Voronoi Diagram Boundary Line Convex Polygon Combinatorial Complexity Left Endpoint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aggarwal, A., Guibas, L., Saxe, J., Shor, P.: A linear time algorithm for computing the voronoi diagram of a convex polygon. In: Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, STOC 1987, pp. 39–45. ACM, New York (1987)CrossRefGoogle Scholar
  2. 2.
    Aurenhammer, F.: Voronoi diagrams–a survey of a fundamental geometric data structure. ACM Comput. Surv. 23, 345–405 (1991)CrossRefGoogle Scholar
  3. 3.
    Aurenhammer, F., Stöckl, G.: On the Peeper’s Voronoi diagram. SIGACT News 22, 50–59 (1991)CrossRefGoogle Scholar
  4. 4.
    Aurenhammer, F., Edelsbrunner, H.: An optimal algorithm for constructing the weighted voronoi diagram in the plane. In: Pattern Recognition, pp. 251–257 (1984)Google Scholar
  5. 5.
    de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry Algorithms and Applications. Springer (1997)Google Scholar
  6. 6.
    Edelsbrunner, H., Guibas, L.J., Sharir, M.: The upper envelope of piecewise linear functions: Algorithms and applications. Discrete & Computational Geometry 4, 311–336 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Fan, C., He, J., Luo, J., Zhu, B.: Moving network voronoi diagram. In: ISVD, pp. 142–150 (2010)Google Scholar
  8. 8.
    Fortune, S.: A sweepline algorithm for voronoi diagrams. Algorithmica 2, 153–174 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Gowda, I.G., Kirkpatrick, D.G., Lee, D.T., Naamad, A.: Dynamic voronoi diagrams. IEEE Transactions on Information Theory 29(5), 724–730 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Guibas, L.J., Knuth, D.E., Sharir, M.: Randomized incremental construction of delaunay and voronoi diagrams. Algorithmica 7(4), 381–413 (1992)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Chenglin Fan
    • 1
  • Jun Luo
    • 1
    • 3
  • Wencheng Wang
    • 2
  • Binhai Zhu
    • 3
    • 4
  1. 1.Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesChina
  2. 2.Institute of SoftwareChinese Academy of SciencesChina
  3. 3.Top Key Discipline of Computer Software and Theory, Zhejiang Provincial CollegesZhejiang Normal UniversityChina
  4. 4.Department of Computer ScienceMontana State UniversityBozemanUSA

Personalised recommendations