Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7285))

Abstract

Recent advances in biotechnology and web technology are generating huge collections of similar strings. People now face the problem of storing them compactly while supporting fast pattern searching. One compression scheme called relative Lempel-Ziv compression uses textual substitutions from a reference text as follows: Given a (large) set S of strings, represent each string in S as a concatenation of substrings from a reference string R. This basic scheme gives a good compression ratio when every string in S is similar to R, but does not provide any pattern searching functionality. Here, we describe a new data structure that supports fast pattern searching.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. The 1000 Genomes Project Consortium: A map of human genome variation from population-scale sequencing. Nature 467(7319), 1061–1073 (2010)

    Google Scholar 

  2. Bille, P., Landau, G.M., Raman, R., Sadakane, K., Satti, S.R., Weimann, O.: Random access to grammar-compressed strings. In: SODA, pp. 373–389 (2011)

    Google Scholar 

  3. Cao, M.D., Dix, T.I., Allison, L., Mears, C.: A simple statistical algorithm for biological sequence compression. In: DCC, pp. 43–52 (2007)

    Google Scholar 

  4. Chan, T.M., Larsen, K.G., Pătraşcu, M.: Orthogonal range searching on the RAM, revisited. In: SoCG, pp. 1–10 (2011)

    Google Scholar 

  5. Christley, S., Lu, Y., Li, C., Xie, X.: Human genomes as email attachments. Bioinformatics 25(2), 274–275 (2009)

    Article  Google Scholar 

  6. Claude, F., Navarro, G.: Self-indexed Text Compression Using Straight-Line Programs. In: Královič, R., Niwiński, D. (eds.) MFCS 2009. LNCS, vol. 5734, pp. 235–246. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Ferragina, P., Manzini, G.: Compression boosting in optimal linear time using the Burrows-Wheeler Transform. In: SODA, pp. 655–663 (2004)

    Google Scholar 

  8. Ferragina, P., Manzini, G.: Indexing compressed text. Journal of the ACM 52(4), 552–581 (2005)

    Article  MathSciNet  Google Scholar 

  9. Fischer, J., Heun, V.: A New Succinct Representation of RMQ-Information and Improvements in the Enhanced Suffix Array. In: Chen, B., Paterson, M., Zhang, G. (eds.) ESCAPE 2007. LNCS, vol. 4614, pp. 459–470. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  10. Gagie, T., Gawrychowski, P., Kärkkäinen, J., Nekrich, Y., Puglisi, S.J.: A Faster Grammar-Based Self-index. In: Dediu, A.-H., Martín-Vide, C. (eds.) LATA 2012. LNCS, vol. 7183, pp. 240–251. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  11. Golynski, A., Munro, J.I., Rao, S.S.: Rank/select operations on large alphabets: a tool for text indexing. In: SODA, pp. 368–373 (2006)

    Google Scholar 

  12. Grumbach, S., Tahi, F.: Compression of DNA sequences. In: DCC, pp. 340–350 (1993)

    Google Scholar 

  13. Huang, S., Lam, T.W., Sung, W.K., Tam, S.L., Yiu, S.M.: Indexing Similar DNA Sequences. In: Chen, B. (ed.) AAIM 2010. LNCS, vol. 6124, pp. 180–190. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  14. Kreft, S., Navarro, G.: LZ77-like compression with fast random access. In: DCC, pp. 239–248 (2010)

    Google Scholar 

  15. Kreft, S., Navarro, G.: Self-indexing Based on LZ77. In: Giancarlo, R., Manzini, G. (eds.) CPM 2011. LNCS, vol. 6661, pp. 41–54. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  16. Kuruppu, S., Puglisi, S.J., Zobel, J.: Relative Lempel-Ziv Compression of Genomes for Large-Scale Storage and Retrieval. In: Chavez, E., Lonardi, S. (eds.) SPIRE 2010. LNCS, vol. 6393, pp. 201–206. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  17. Kuruppu, S., Puglisi, S.J., Zobel, J.: Reference Sequence Construction for Relative Compression of Genomes. In: Grossi, R., Sebastiani, F., Silvestri, F. (eds.) SPIRE 2011. LNCS, vol. 7024, pp. 420–425. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  18. Mäkinen, V., Navarro, G.: Implicit Compression Boosting with Applications to Self-indexing. In: Ziviani, N., Baeza-Yates, R. (eds.) SPIRE 2007. LNCS, vol. 4726, pp. 229–241. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  19. Mäkinen, V., Navarro, G., Sirén, J., Välimäki, N.: Storage and retrieval of highly repetitive sequence collections. J. of Computational Biology 17(3), 281–308 (2010)

    Article  Google Scholar 

  20. Muthukrishnan, S.: Efficient algorithms for document retrieval problems. In: SODA, pp. 657–666 (2002)

    Google Scholar 

  21. Nekrich, Y.: Orthogonal range searching in linear and almost-linear space. Computational Geometry 42(4), 342–351 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Pătraşcu, M.: Succincter. In: FOCS, pp. 305–313 (2008)

    Google Scholar 

  23. Rytter, W.: Application of Lempel-Ziv factorization to the approximation of grammar-based compression. Theoretical Computer Science 302, 211–222 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sirén, J., Välimäki, N., Mäkinen, V., Navarro, G.: Run-Length Compressed Indexes Are Superior for Highly Repetitive Sequence Collections. In: Amir, A., Turpin, A., Moffat, A. (eds.) SPIRE 2008. LNCS, vol. 5280, pp. 164–175. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  25. Willard, D.E.: Log-logarithmic worst-case range queries are possible in space Θ(N). Information Processing Letters 17(2), 81–84 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE Transactions on Information Theory 23(3), 337–343 (1977)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Do, H.H., Jansson, J., Sadakane, K., Sung, WK. (2012). Fast Relative Lempel-Ziv Self-index for Similar Sequences. In: Snoeyink, J., Lu, P., Su, K., Wang, L. (eds) Frontiers in Algorithmics and Algorithmic Aspects in Information and Management. Lecture Notes in Computer Science, vol 7285. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29700-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29700-7_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29699-4

  • Online ISBN: 978-3-642-29700-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics