Solving Difficult SAT Problems by Using OBDDs and Greedy Clique Decomposition

  • Yanyan Xu
  • Wei Chen
  • Kaile Su
  • Wenhui Zhang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7285)


In this paper, we propose an OBDD-based algorithm called greedy clique decomposition, which is a new variable grouping heuristic method, to solve difficult SAT problems. We implement our algorithm and compare it with several state-of-art SAT solvers including Minisat, Ebddres and TTS. We show that with this new heuristic method, our implementation of an OBDD-based satisfiability solver can perform better for selected difficult SAT problems, whose conflict graphs possess a clique-like structure.


Boolean Function Tree Computation Binary Decision Diagram Symbolic Model Check Variable Elimination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Stephen, A.: Cook. The Complexity of Theorem-Proving Procedures. In: STOC, pp. 151–158. ACM (1971)Google Scholar
  2. 2.
    Velev, M.N., Bryant, R.E.: Effective use of Boolean satisfiability procedures in the formal verification of superscalar and VLIW microprocessors. J. Symb. Comput. 35(2), 73–106 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Nam, G.-J., Sakallah, K.A., Rutenbar, R.A.: A new FPGA detailed routing approach via search-based Boolean satisfiability. IEEE Trans. on CAD of Integrated Circuits and Systems 21(6), 674–684 (2002)CrossRefGoogle Scholar
  4. 4.
    Kautz, H.A., Selman, B.: Planning as Satisfiability. In: ECAI, pp. 359–363 (1992)Google Scholar
  5. 5.
    Franco, J., Kouril, M., Schlipf, J., Ward, J., Weaver, S., Dransfield, M., Vanfleet, W.M.: SBSAT: a State-Based, BDD-Based Satisfiability Solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 398–410. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Damiano, R.F., Kukula, J.H.: Checking satisfiability of a conjunction of BDDs. In: DAC, pp. 818–823. ACM (2003)Google Scholar
  7. 7.
    Pan, G., Vardi, M.Y.: Search vs. Symbolic Techniques in Satisfiability Solving. In: H. Hoos, H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 235–250. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Rish, I., Dechter, R.: Resolution versus Search: Two Strategies for SAT. J. Autom. Reasoning 24(1/2), 225–275 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Groote, J.F., Zantema, H.: Resolution and binary decision diagrams cannot simulate each other polynomially. Discrete Applied Mathematics 130(2), 157–171 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an Efficient SAT Solver. In: DAC, pp. 530–535. ACM (2001)Google Scholar
  11. 11.
    Chen, W., Zhang, W.: A direct construction of polynomial-size OBDD proof of pigeon hole problem. Inf. Process. Lett. 109(10), 472–477 (2009)zbMATHCrossRefGoogle Scholar
  12. 12.
    Surynek, P.: Solving Difficult SAT Instances Using Greedy Clique Decomposition. In: Miguel, I., Ruml, W. (eds.) SARA 2007. LNCS (LNAI), vol. 4612, pp. 359–374. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Bryant, R.E.: Graph-Based Algorithms for Boolean Function Manipulation. IEEE Trans. Computers 35(8), 677–691 (1986)zbMATHCrossRefGoogle Scholar
  14. 14.
    McMillan, K.L.: Symbolic Model Checking. Kluwer Academic Publishers ACM (1993)Google Scholar
  15. 15.
    Yue, W., Xu, Y., Su, K.: BDDRPA*: An Efficient BDD-Based Incremental Heuristic Search Algorithm for Replanning. In: Sattar, A., Kang, B.H. (eds.) AI 2006. LNCS (LNAI), vol. 4304, pp. 627–636. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Xu, Y., Yue, W.: A Generalized Framework for BDD-based Replanning A* Search. In: Kim, H.-K., Lee, R.Y. (eds.) SNPD, pp. 133–139. IEEE Computer Society (2009)Google Scholar
  17. 17.
    Xu, Y., Yue, W., Su, K.: The BDD-Based Dynamic A* Algorithm for Real-Time Replanning. In: Deng, X., Hopcroft, J.E., Xue, J. (eds.) FAW 2009. LNCS, vol. 5598, pp. 271–282. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  18. 18.
    Pan, G., Vardi, M.Y.: Symbolic Techniques in Satisfiability Solving. J. Autom. Reasoning 35(1-3), 25–50 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Jussila, T., Sinz, C., Biere, A.: Extended Resolution Proofs for Symbolic SAT Solving with Quantification. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 54–60. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  20. 20.
    Sinz, C., Biere, A.: Extended Resolution Proofs for Conjoining BDDs. In: Grigoriev, D., Harrison, J., Hirsch, E.A. (eds.) CSR 2006. LNCS, vol. 3967, pp. 600–611. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  21. 21.
    Somenzi, F.: CUDD: CU Decision Diagram Package, Release 2.4.1. Technical report, University of Colorado at Boulder (2005)Google Scholar
  22. 22.
    Aloul, F.A., Ramani, A., Markov, I.L., Sakallah, K.A.: Solving difficult SAT instances in the presence of symmetry. In: DAC 2002: Proceedings of the 39th Conference on Design Automation, pp. 731–736. ACM, New York (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Yanyan Xu
    • 1
  • Wei Chen
    • 2
  • Kaile Su
    • 3
    • 4
  • Wenhui Zhang
    • 5
  1. 1.School of Information Science and TechnologyBeijing Forestry UniversityChina
  2. 2.Naveen Jindal School of ManagementThe University of TexasDallasUSA
  3. 3.College of Mathematics Physics and Information EngineeringZhejiang Normal UniversityJinhuaChina
  4. 4.School of Electronics Engineering and Computer SciencePeking UniversityChina
  5. 5.State Key Laboratory of Computer Science, Institute of SoftwareChinese Academy of SciencesChina

Personalised recommendations