Advertisement

Online Minimum Makespan Scheduling with a Buffer

  • Yan Lan
  • Xin Chen
  • Ning Ding
  • György Dósa
  • Xin Han
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7285)

Abstract

In this paper we study an online minimum makespan scheduling problem with a reordering buffer. We obtain the following results, which improve on work from FOCS 2008: i) for m identical machines, we give a 1.5-competitive online algorithm with a buffer of size 1.5m, which is better than the previous best result : 1.5-competitive algorithm with a buffer of size 1.6197m; ii) for three identical machines, to give an optimal online algorithm we reduce the size of the buffer from nine to six; iii) for m uniform machines, using a buffer of size m, we improve the competitive ratio from 2 + ε to 2 − 1/m + ε, where ε > 0 is sufficiently small.

Keywords

Competitive Ratio Online Algorithm Identical Machine Online Schedule Uniform Machine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albers, S.: Better bounds for online scheduling. SIAM J. Comput. 29(2), 459–473 (1999)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bartal, Y., Fiat, A., Karloff, H., Vohra, R.: New algorithms for an ancient scheduling problem. J. Comput. Syst. Sci. 51(3), 359–366 (1995)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Chen, X., Lan, Y., Benko, A., Dósa, G., Han, X.: Optimal algorithms for online scheduling with bounded rearrangement at the end. Theor. Comput. Sci. 412(45), 6269–6278 (2011)zbMATHCrossRefGoogle Scholar
  4. 4.
    Dósa, G., Epstein, L.: Online scheduling with a buffer on related machines. J. Comb. Optim. 20(2), 161–179 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Dósa, G., Epstein, L.: Preemptive online scheduling with reordering. SIAM J. Discrete Math. 25(1), 21–49 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Dósa, G., Wang, Y., Han, X., Guo, H.: Online scheduling with rearrangement on two related machines. Theor. Comput. Sci. 412(8-10), 642–653 (2011)zbMATHCrossRefGoogle Scholar
  7. 7.
    Englert, M., Özmen, D., Westermann, M.: The power of reordering for online minimum makespan scheduling. In: Proc. 48th Symp. Foundations of Computer Science (FOCS), pp. 603–612 (2008)Google Scholar
  8. 8.
    Fleischer, R., Wahl, M.: Online scheduling revisited. Journal of Scheduling 3, 343–353 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Friesen, D.K.: Tighter bounds for lpt scheduling on uniform processors. SIAM J. Comput. 16(3), 554–560 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman (1979)Google Scholar
  11. 11.
    Graham, R.L.: Bounds on multiprocessing timing anomalies. SIAM Journal of Applied Mathematics 17(2), 416–429 (1969)zbMATHCrossRefGoogle Scholar
  12. 12.
    Hochbaum, D.S., Shmoys, D.B.: A polynomial approximation scheme for scheduling on uniform processors: Using the dual approximation approach. SIAM Journal on Computing 17(3), 539–551 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Rudin III, J.F., Chandrasekaran, R.: Improved bounds for the online scheduling problem. SIAM J. Comput. 32(3), 717–735 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Karger, D.R., Phillips, S.J., Torng, E.: A better algorithm for an ancient scheduling problem. J. Algorithms 20(2), 400–430 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Kellerer, H., Kotov, V., Speranza, M.G., Tuza, Z.: Semi on-line algorithms for the partition problem. Oper. Res. Lett. 21(5), 235–242 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Liu, M., Xu, Y., Chu, C., Zheng, F.: Online scheduling on two uniform machines to minimize the makespan. Theor. Comput. Sci. 410(21-23), 2099–2109 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Sanders, P., Sivadasan, N., Skutella, M.: Online scheduling with bounded migration. Math. Oper. Res. 34(2), 481–498 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Tan, Z., Yu, S.: Online scheduling with reassignment. Oper. Res. Lett. 36(2), 250–254 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Zhang, G.: A simple semi on-line algorithm for p2//cmax with a buffer. Information Processing Letters 61, 145–148 (1997)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Yan Lan
    • 1
  • Xin Chen
    • 2
  • Ning Ding
    • 2
  • György Dósa
    • 3
  • Xin Han
    • 2
  1. 1.Dalian Neusoft Institute of InformationChina
  2. 2.Software SchoolDalian University of TechnologyChina
  3. 3.Department of MathematicsUniversity of PannoniaVeszprémHungary

Personalised recommendations