Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 427))

Abstract

Nature-inspired metaheuristic algorithms have attracted much attention in the last decade, and new algorithms have emerged almost every year with a vast, ever-expanding literature. In this chapter, we briefly review two latest metaheuristics: bat algorithm and cuckoo search for global optimization. Bat algorithm was proposed by Xin-She Yang in 2010, inspired by the echolocation of microbats, while cuckoo search was developed by Xin-She Yang and Suash Deb in 2009, inspired by the brood parasitism of some cuckoo species. Both algorithms have shown superiority over many other metaheuristics over a wide range of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Altringham, J.D.: Bats: Biology and Behaviour. Oxford University Press (1996)

    Google Scholar 

  2. Barthelemy, P., Bertolotti, J., Wiersma, D.S.: A Lévy flight for light. Nature 453, 495–498 (2008)

    Article  Google Scholar 

  3. Bradley, D.: Novel ‘cuckoo search algorithm’ beats particle swarm optimization in engineering design (news article). In: Science Daily, May 29 (2010); Also in: Scientific Computing (magazine) (June 1, 2010)

    Google Scholar 

  4. Brown, C., Liebovitch, L.S., Glendon, R.: Lévy flights in Dobe Ju/’hoansi foraging patterns. Human Ecol. 35, 129–138 (2007)

    Article  Google Scholar 

  5. Colin, T.: The Variety of Life. Oxford University Press (2000)

    Google Scholar 

  6. Durgun, I., Yildiz, A.R.: Structural design optimization of vehicle components using cuckoo search algorithm. Materials Testing 3, 185–188 (2012)

    Google Scholar 

  7. Gandomi, A.H., Yang, X.S., Alavi, A.H.: Cuckoo search algorithm: a meteheuristic approach to solve structural optimization problems. In: Engineering with Computers, July 29 (2011), doi:10.1007/s00366-011-0241-y

    Google Scholar 

  8. Mantegna, R.N.: Fast, accurate algorithm for numerical simulation of Levy stable stochastic processes. Physical Review E 49, 4677–4683 (1994)

    Article  Google Scholar 

  9. Payne, R.B., Sorenson, M.D., Klitz, K.: The Cuckoos. Oxford University Press (2005)

    Google Scholar 

  10. Pavlyukevich, I.: Lévy flights, non-local search and simulated annealing. J. Computational Physics 226, 1830–1844 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Pavlyukevich, I.: Cooling down Lévy flights. J. Phys. A: Math. Theor. 40, 12299–12313 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Reynolds, A.M., Frye, M.A.: Free-flight odor tracking in Drosophila is consistent with an optimal intermittent scale-free search. PLoS One 2, e354 (2007)

    Article  Google Scholar 

  13. Reynolds, A.M., Rhodes, C.J.: The Lévy flight paradigm: random search patterns and mechanisms. Ecology 90, 877–887 (2009)

    Article  Google Scholar 

  14. Richardson, P.: Bats. Natural History Museum, London (2008)

    Google Scholar 

  15. Richardson, P.: The secrete life of bats, http://www.nhm.ac.uk

  16. Tsai, P.W., Pan, J.S., Liao, B.Y., Tsai, M.J., Istanda, V.: Bat algorithm inspired algorithm for solving numerical optimization problems. Applied Mechanics and Materials 148-149, 34–137 (2012)

    Google Scholar 

  17. Walton, S., Hassan, O., Morgan, K., Brown, M.R.: Modified cuckoo search: a new gradient free optimization algorithm. Chaos, Solitons & Fractals 44(9), 710–718 (2011)

    Article  Google Scholar 

  18. Yang, X.-S.: A New Metaheuristic Bat-Inspired Algorithm. In: González, J.R., Pelta, D.A., Cruz, C., Terrazas, G., Krasnogor, N. (eds.) NICSO 2010. SCI, vol. 284, pp. 65–74. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  19. Yang, X.-S.: Harmony Search as a Metaheuristic Algorithm. In: Geem, Z.W. (ed.) Music-Inspired Harmony Search Algorithm. SCI, vol. 191, pp. 1–14. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  20. Yang, X.S.: Nature-Inspired Metaheuristic Algorithms, 2nd edn. Luniver Press, UK (2010)

    Google Scholar 

  21. Yang, X.S., Deb, S.: Cuckoo search via Lévy flights. In: Proc. of World Congress on Nature & Biologically Inspired Computing (NaBic 2009), pp. 210–214. IEEE Publications, USA (2009)

    Chapter  Google Scholar 

  22. Yang, X.S., Deb, S.: Engineering optimization by cuckoo search. Int. J. Math. Modelling & Numerical Optimisation 1, 330–343 (2010)

    Article  MATH  Google Scholar 

  23. Yang, X.S.: Engineering Optimization: An Introduction with Metaheuristic Applications. John Wiley and Sons, USA (2010)

    Book  Google Scholar 

  24. Yang, X.S.: Bat algorithm for multi-objective optimisation. Int. J. Bio-Inspired Computation 3, 267–274 (2011)

    Google Scholar 

  25. Yang, X.S., Gandomi, A.H.: Bat algorithm: a novel approach for global engineering optimization. Engineering Computations 29(4) (in press, 2012)

    Google Scholar 

  26. Yang, X.S., Deb, S.: Multiobjective cuckoo search for design optimization. Computers and Operations Research, October 2011 (2012) (accepted), doi:10.1016/j.cor.2011.09.026

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag GmbH Berlin Heidelberg

About this chapter

Cite this chapter

Yang, XS. (2013). Bat Algorithm and Cuckoo Search: A Tutorial. In: Yang, XS. (eds) Artificial Intelligence, Evolutionary Computing and Metaheuristics. Studies in Computational Intelligence, vol 427. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29694-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29694-9_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29693-2

  • Online ISBN: 978-3-642-29694-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics