Skip to main content

Multidisciplinary Trends in Modern Artificial Intelligence: Turing’s Way

  • Chapter
Artificial Intelligence, Evolutionary Computing and Metaheuristics

Part of the book series: Studies in Computational Intelligence ((SCI,volume 427))

  • 4388 Accesses

Abstract

The paper faces the challenge to generalize existing trends and approaches in the field of artificial intelligence. Under consideration are expert systems, dynamic neural networks, probabilistic reasoning, fuzzy logic, genetic algorithms, multi-agent systems, bio-inspired algorithms, distributed nonlinear computing, chaos-driven pattern recognition. Each approach strengths and limitations are stated without exhaustive treatment to involve specialist from adjacent fields in discussion. The most perspective research directions are revealed and analyzed in reference to Turing’s way in artificial intelligence and beyond.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aaronson, S.: The Limits of Quantum Computers. Scientific American 298/3(50-7), 36–8733 (2008)

    Google Scholar 

  2. Angelini, L., Carlo, F., Marangi, C., Pellicoro, M., Nardullia, M., Stramaglia, S.: Clustering data by inhomogeneous chaotic map lattices. Phys. Rev. Lett. (85), 78–102 (2000)

    Article  Google Scholar 

  3. Arbib, M.: Turing Machines, Finite Automata and Neural Nets. Journal of the ACM 8, 467–475 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  4. Baum, S.D., Goertzel, B., Goertzel, T.: How long until human-level AI? Results from an expert assessment. Technological Forecasting & Social Change 78, 185–195 (2011)

    Article  Google Scholar 

  5. Benderskaya, E.N., Zhukova, S.V.: Clustering by Chaotic Neural Networks with Mean Field Calculated Via Delaunay Triangulation. In: Corchado, E., Abraham, A., Pedrycz, W. (eds.) HAIS 2008. LNCS (LNAI), vol. 5271, pp. 408–416. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Benderskaya, E.N., Zhukova, S.V.: Fragmentary Synchronization in Chaotic Neural Network and Data Mining. In: Corchado, E., Wu, X., Oja, E., Herrero, Á., Baruque, B. (eds.) HAIS 2009. LNCS, vol. 5572, pp. 319–326. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Benderskaya, E.N., Zhukova, S.V.: Dynamic Data Mining: Synergy of Bio-Inspired Clustering Methods. In: Funatsu, K. (ed.) Knowledge-Oriented Applications in Data Mining, pp. 398–410. InTech (2011) ISBN: 978-953-307-154-1

    Google Scholar 

  8. Benderskaya, E.N., Zhukova, S.V.: Self-organized Clustering and Classification: A Unified Approach via Distributed Chaotic Computing. In: Abraham, A., Corchado, J.M., González, S.R., De Paz Santana, J.F. (eds.) International Symposium on Distributed Computing and Artificial Intelligence. AISC, vol. 91, pp. 423–431. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  9. Benderskaya, E.N., Zhukova, S.V.: Oscillatory Chaotic Neural Network as a Hybrid System for Pattern Recognition. In: Proceedings of IEEE Workshop on Hybrid Intelligent Models and Applications, Paris, France, April 10-15, pp. 39–45 (2011)

    Google Scholar 

  10. Benderskaya, E.N., Zhukova, S.V.: Chaotic Clustering: Fragmentary Synchronization of Fractal Waves. In: Esteban, T.-C. (ed.) Chaotic Systems, pp. 187–202. InTech (2011) ISBN: 978-953-307-564-8

    Google Scholar 

  11. Blum, C., Merkle, D.: Swarm Intelligence: Introduction and Applications. Springer (2009) ISBN 978-3642093432

    Google Scholar 

  12. Bobrow, D.G., Brady, M.: Artificial Intelligence 40 years later. Artificial Intelligence 103, 1–4 (1998)

    Article  Google Scholar 

  13. Borisyuk, R.M., Borisyuk, G.N., Kazanovich, Y.B.: The synchronization principle in modelling of binding and attention. Membrane & Cell Biology 11(6), 753–761 (1998)

    Google Scholar 

  14. Boryczka, U.: Finding groups in data: Cluster analysis with ants. Applied Soft Computing (9), 61–70 (2009)

    Google Scholar 

  15. Chinchuluun, A., Pardalos, M.P., Migdalas, A., Pitsoulis, L.: Pareto Optimality. Game Theory and Equilibria. In: SOIA, Springer (2008)

    Google Scholar 

  16. Cooper, S.B.: Emergence as a computability-theoretic phenomenon. Applied Mathematics and Computation 215, 1351–1360 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cristianini, N.: Are we still there? Neural Networks 23, 466–470 (2010)

    Article  Google Scholar 

  18. Delvenne, J.: What is a universal computing machine? Applied Mathematics and Computation 215, 1368–1374 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Diller, A.: Why AI and Robotics are going nowhere fast? In: Vallverdu, J. (ed.) Thinking Machines and the Philosophy of Computer Science: Concepts and Principles, pp. 328–343, Information Science Reference (2010)

    Google Scholar 

  20. Dimitriadou, E., Weingessel, A., Hornik, K.: Voting-Merging: An Ensemble Method for Clustering. In: Dorffner, G., Bischof, H., Hornik, K. (eds.) ICANN 2001. LNCS, vol. 2130, pp. 217–224. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  21. Giarratano, J.C., Riley, G.D.: Expert Systems. Principles and Programming. Course Technology (2004)

    Google Scholar 

  22. Haken, H.: Synergetic Computers and Cognition: A Top-Down Approach to Neural Nets. Springer, SSS (2010)

    Google Scholar 

  23. Haken, H.S.: Introduction and Advanced Topics. In: Physics and Astronomy Online Library, p. 758. Springer (2004)

    Google Scholar 

  24. Handl, J., Meyer, B.: Ant-based and swarm-based clustering. Swarm Intelligence 1(2), 95–113 (2007)

    Article  Google Scholar 

  25. Haykin, S.: Neural Networks. A Comprehensive Foundation. Prentice Hall PTR, Upper Saddle River (1998)

    Google Scholar 

  26. Hjelmfelt, A., Weinberger, E.D., Ross, J.: Chemical implementation of neural networks and Turing machines. Proceedings of the National Academy of Sciences of the United States of America 88, 10983–10987 (1991)

    Article  MATH  Google Scholar 

  27. Hutter, M.: Universal Algorithmic Intelligence: A mathematical top-down approach. In: Goertzel, B., Pennachin, C. (eds.) Artificial General Intelligence, pp. 227–290. Springer (2007)

    Google Scholar 

  28. Hyötyniemi, H.: Turing Machines are Recurrent Neural Networks. In: Alander, J., Honkela, T., Jakobsson, M. (eds.) Proceedings of STeP 1996, pp. 13–24 (1996)

    Google Scholar 

  29. Inoue, M., Kaneko, K.: Dynamics of coupled adaptive elements: Bursting and intermittent oscillations generated by frustration in networks. Physical Review E (81), 026203, 1–14 (2010)

    Google Scholar 

  30. Izhikevich, E.M.: Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting. MIT Press (2010)

    Google Scholar 

  31. Jaeger, H.: Short term memory in echo state networks. GMD Report 152: German National Research Center for Information Technology (2001)

    Google Scholar 

  32. Jang, J.R., Sun, C., Mizutani, E.: Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence. Prentice-Hall (1997)

    Google Scholar 

  33. Kaiser, M.: Brain architecture: a design for natural computation. Philosophical Transactions of the Royal Society A 365(1861), 3033–3045 (2007)

    Article  MathSciNet  Google Scholar 

  34. Kamps, M.: Towards Truly Human-Level Intelligence in Artificial Applications. Cognitive Systems Research (2011) doi:10.1016/j.cogsys.2011.01.003

    Google Scholar 

  35. Kaneko, K.: Chaotic but regular posi-nega switch among coded attractors by cluster-size variations. Phys. Rev. Lett. 63(14), 219–223 (1989)

    Article  MathSciNet  Google Scholar 

  36. Kumar, B.V., Mahalanobis, A., Juday, R.D.: Correlation Pattern Recognition, p. 402. Cambridge University Press (2006)

    Google Scholar 

  37. Lin, C.-T., Lee, C.S.: Neural Fuzzy Systems: A Neuro-Fuzzy Synergism to Intelligent Systems. Prentice Hall (1998)

    Google Scholar 

  38. Luger, G.F.: Artificial Intelligence: Structures and Strategies for Complex Problem Solving. Addison-Wesley (2008)

    Google Scholar 

  39. Lukoševičius, M., Jaeger, H.: Reservoir computing approaches to recurrent neural network training. Computer Science Review 3(3), 127–149 (2009)

    Article  Google Scholar 

  40. Maass, W., Natschlaeger, T., Markram, H.: Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural Computation 14(11), 2531–2560 (2002)

    Article  MATH  Google Scholar 

  41. Maimon, O., Rokach, L. (eds.): Data Mining and Knowledge Discovery Handbook, 2nd edn. Springer (2010)

    Google Scholar 

  42. Mandelbrot, B.: The Fractal Geometry of Nature, p. 468. W.H. Freeman (1983)

    Google Scholar 

  43. Mira, J.M.: Symbols versus connections: 50 years of artificial intelligence. Neurocompuing 71, 671–680 (2008)

    Article  Google Scholar 

  44. Mosekilde, E., Maistrenko, Y., Postnov, D.: Chaotic synchronization. World Scientific Series on Nonlinear Science, Series A vol. 42, 440 (2002)

    MathSciNet  Google Scholar 

  45. Oliveira, F.: Limitations of learning in automata-based systems. European Journal of Operational Research 203, 684–691 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  46. Pedrycz, W., Weber, R.: Special issue on soft computing for dynamic data mining. Applied Soft Computing (8), 1281–1282 (2008)

    Google Scholar 

  47. Peitgen, H., Jürgens, H., Dietmar, S.: Chaos and Fractals. New Frontiers of Science, 2nd edn., vol. XIII(864), p. 125 illus (2004) ISBN: 978-0-387-20229-7

    Google Scholar 

  48. Pikovsky, A., Maistrenko, Y.: Synchronization: Theory and Application. NATO Science Series II: Mathematics, Physics and Chemistry, p. 268. Springer (2008) ISBN- 9781402014178

    Google Scholar 

  49. Potapov, A.V., Ali, M.K.: Nonlinear dynamics and chaos in information processing neural networks. Differential Equations and Dynamical Systems 9(3-4), 259–319 (2001)

    MathSciNet  MATH  Google Scholar 

  50. Preparata, F.R., Shamos, M.I.: Computational Geometry. An Introduction. Monographs in Computer Science, p. 398. Springer (1993)

    Google Scholar 

  51. Prigogine, I.: Order Out of Chaos. Shambala (1984)

    Google Scholar 

  52. Rothemund, P.W.K.: A DNA and restriction enzyme implementation of Turing machines. DNA Based Computers 6, 75–120 (1996)

    MathSciNet  Google Scholar 

  53. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall (2002)

    Google Scholar 

  54. Schweitzer, F.: Self-Organization of Complex Structures: From Individual to Collective Dynamics. CRC Press (1997)

    Google Scholar 

  55. Simon, H.A.: Artificial intelligence: an empirical science. Artificial Intelligence 77, 95–127 (1995)

    Article  Google Scholar 

  56. Teuscher, C.: Turing’s Connectionism An Investigation of Neural Network Architectures (2002)

    Google Scholar 

  57. Saunders, P.T. (ed.): Turing, A. M. Collected Works of A. M. TUring: Morphogenesis. North-Holland (1992)

    Google Scholar 

  58. Britton, J.L. (ed.): Turing, A. M. Collected Works of A. M. Turing: Pure Mathematics. North-Holland (1992)

    Google Scholar 

  59. Ince, D.C. (ed.): Turing, A. M. Collected Works of A. M. TUring: Mechanical Intelligence. North-Holland (1992)

    Google Scholar 

  60. Gandy, R., Yates, C. (eds.): Turing A. M. Collected Works of A. M. Turing-Mathematical Logic. Elsevier (2001)

    Google Scholar 

  61. Ultsch, A.: Clustering with SOM: U*C. In: Proc. Workshop on Self-Organizing Maps, Paris, France, pp. 75–82 (2005)

    Google Scholar 

  62. Velazquez, J.: Brain, behaviour and mathematics: Are we using the right approaches? Physica D 212, 161–182 (2005)

    Article  MathSciNet  Google Scholar 

  63. Webster, C.S.: Alan Turing’s unorganized machines and artificial neural networks: his remarkable early work and future possibilities. Evolutionary Intelligence, 1–9 (July 22, 2011)

    Google Scholar 

  64. Wolfram, S.: A New Kind of Science. Wolfram Media (2002)

    Google Scholar 

  65. Zak, M.: Quantum-inspired resonance for associative memory. Chaos, Solitons and Fractals 41, 2306–2312 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  66. Zbilut, J.P., Giuliani, A.: Biological uncertainty Theory Bioscience 127 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena N. Benderskaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag GmbH Berlin Heidelberg

About this chapter

Cite this chapter

Benderskaya, E.N., Zhukova, S.V. (2013). Multidisciplinary Trends in Modern Artificial Intelligence: Turing’s Way. In: Yang, XS. (eds) Artificial Intelligence, Evolutionary Computing and Metaheuristics. Studies in Computational Intelligence, vol 427. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29694-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29694-9_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29693-2

  • Online ISBN: 978-3-642-29694-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics