Advertisement

7.7 The Earliest Phosphorites: Radical Change in the Phosphorus Cycle During the Palaeoproterozoic

  • Aivo Lepland
  • Victor A. Melezhik
  • Dominic Papineau
  • Alexander E. Romashkin
  • Lauri Joosu
Chapter
Part of the Frontiers in Earth Sciences book series (FRONTIERS)

Abstract

Phosphate is an essential and growth-limiting nutrient required by all forms of life, as it is a key component of many important macro-molecules. These macro-molecules are involved in energy transport, information storage, and structural support functions include membrane lipids, proteins, and nucleic acids. The global phosphorus cycle, which includes only dissolved and solid phases without any gaseous components, is strongly influenced by biological processes (Gulbrandsen 1969; Jahnke 1992; Föllmi 1996). Continental weathering and riverine discharges are the most important sources delivering both particulate and dissolved phosphate into the oceans (Froelich et al. 1982; Föllmi 1995). Long-term changes in the phosphorus cycle, such as variations in sources, concentration of dissolved seawater phosphate, formation of phosphorite deposits, and sequestration in biomass, are linked with other biogeochemical cycles and track major changes in Earth’s environmental conditions (Sheldon 1980; Baturin 1982; Papineau 2010; Planavsky et al. 2010). Biologic influence upon the phosphorus cycle can be traced back to the early Archaean (Blake et al. 2010). Ancient biologic processing of phosphate is inferred from the oxygen isotope ratios of some phosphates in 3200–3500 Ma sediments that are similar to those of modern marine biogenic phosphates (Blake et al. 2010).

Keywords

Band Iron Formation Large Igneous Province Econ Geol Phosphorus Cycle Fennoscandian Shield 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmad T, Dragusanu C, Tanaka T (2008) Provenance of Proterozoic basal Aravalli mafic volcanic rocks from Rajasthan, Northwestern India: Nd isotopes evidence for enriched mantle reservoirs. Precambrian Res 162:150–159Google Scholar
  2. Äikäs O (1980) Uraniferous phosphorite and apatite-bearing gneisses in the Proterozoic of Finland. In: Ferguson J, Goleby AB (eds) Uranium in the Pine Creek Geosyncline: proceedings of the International Uranium Symposium on the Pine Creek Geosyncline. International Atomic Energy Agency, Vienna, pp 675–681Google Scholar
  3. Äikäs O (1981) Proterozoic phosphorites in Finland. IGCP 156 Newsletter 9:21–27Google Scholar
  4. Äikäs O (1989) Phosphate resources in early Proterozoic suprecrustal rocks, Finland, with reference to the Baltic Shield. In: Notholt AJG, Sheldon RP, Davidson DF (eds) Phosphate deposits of the world, vol 2, Phosphate rock resources. Cambridge University Press, Cambridge, pp 429–436Google Scholar
  5. Akhmedov AM (1973) Phosphorus abundances in metasedimentary rocks of the Pechenga complex. In: Predovsky AA (ed) Problems of investigation and exploitation of natural resources of the North. Kola Science Centre, Apatity, pp 66–74 (in Russian)Google Scholar
  6. Akhmedov AM, Krupenik VA (1990) Turbidity conditions of sedimentation and pyrite formation in the Early Proterozoic Pechenga Basin. Soviet Geol 11:51–60 (in Russian)Google Scholar
  7. Arning ET, Lückge A, Breuer C, Gussone N, Birgel D, Peckmann J (2009) Genesis of phosphorite crusts of Peru. Marine Geol 262:68–81Google Scholar
  8. Aspler LB, Chiarenzelli JR (1998) Two Neoarchean supercontinents? Evidence from the Paleoproterozoic. Sediment Geol 120:75–104Google Scholar
  9. Bailey JV, Joye SB, Kalanetra KM, Flood BE, Corsetti FA (2007) Evidence of giant sulphur bacteria in Neoproterozoic phosphorites. Nature 445:198–201Google Scholar
  10. Banerjee DM (1971) Precambrian stromatolitic phosphorites of Udaipur, Rajasthan, India. Geol Soc Am Bull 82:2319–2330Google Scholar
  11. Barfod GH, Otero O, Albarède F (2003) Phosphate Lu-Hf geochronology. Chem Geol 200:241–253Google Scholar
  12. Barley ME, Bekker A, Krapez B (2005) Late Archean to early Paleoproterozoic global tectonics, environmental change and the rise of atmospheric oxygen. Earth Planet Sci Lett 238:156–171Google Scholar
  13. Baturin GN (1982) Phosphorites on the sea floor; origin, composition and distribution, vol 33, Developments in sedimentology. Elsevier, Amsterdam, p 343Google Scholar
  14. Bekasova NB (1985) Pechenga palaeogeography in early Pilgujärvi time of the early Proterozoic. Lithol Miner Resour 1:127–137 (in Russian)Google Scholar
  15. Bekasova NB, Dudkin OB (1981) Composition and nature of early Precambrian Pechenga concretionary phosphorites (Kola Peninsula). Lithol Miner Resour 6:107–113 (in Russian)Google Scholar
  16. Bekker A, Karhu JA, Eriksson KA, Kaufman AJ (2003) Chemostratigraphy of Paleoproterozoic carbonate successions of the Wyoming Craton: tectonic forcing of biogeochemical change? Precambrian Res 120:279–325Google Scholar
  17. Bekker A, Holland HD, Wang PL, Rumble D, Stein HJ, Hannah JL, Coetzee LL, Beukes NJ (2004) Dating the rise of atmospheric oxygen. Nature 427:117–120Google Scholar
  18. Bentor YK (1980) Phosphorites; the unsolved problems. Spec Publ Soc Econ Paleontol Mineral 29:3–18Google Scholar
  19. Berner RA (1973) Phosphate removal from sea water by adsorption on volcanogenic ferric oxides. Earth Planet Sci Lett 18:77–86Google Scholar
  20. Berner RA (1993) Weathering and its effect on atmospheric CO2 over Phanerozoic time. Chem Geol 107:373–374Google Scholar
  21. Berner RA, Ruttenberg KC, Ingall ED, Rao JL (1993) The nature of phosphorus burial in modern marine sediment. In: Wollast R, Mackenzie FT, Chou L (eds) Interactions of C, N, P and S biochemical cycles and global change, vol 4, NATO ASI series, I. Springer, Berlin, pp 365–378Google Scholar
  22. Blake RE, Chang SJ, Lepland A (2010) Phosphate oxygen isotopic evidence for a temperate and biologically active Archaean ocean. Nature 464:1029–1032Google Scholar
  23. Bleeker W (2003) The late Archean record: a puzzle in ca. 35 pieces. Lithos 71:99–134Google Scholar
  24. Bremner JM, Rogers J (1990) Phosphorite deposits on the Namibian continental shelf. In: Burnett WC, Riggs SR (eds) Phosphate deposits of the world; Neogene to modern phosphorites. Cambridge University Press, New York, pp 143–152Google Scholar
  25. Burnett WC (1977) Geochemistry and origin of phosphorite deposits from off Peru and Chile. Geol Soc Am Bull 88:813–823Google Scholar
  26. Choudhary AK, Gopalan K, Sastry CA (1984) Present status of the geochronology of the Precambrian rocks of Rajasthan. Tectonophysics 105:131–140Google Scholar
  27. Choudhuri R (1989) Proterozoic phosphorites around Udaipur, Rajasthan, India. In: Notholt AJG, Sheldon RP, Davidson DF (eds) Phosphate deposits of the world, vol 2, Phosphate rock resources. Cambridge University Press, Cambridge, pp 461–466Google Scholar
  28. Compton J, Mallinson D, Glenn CR, Filippelli G, Foellmi K, Shields G, Zanin Y (2000) Variations in the global phosphorus cycle. Spec Publ Soc Sediment Geol 66:21–33Google Scholar
  29. Cook PJ, Shergold JH (1986a) Proterozoic and Cambrian phosphorites: an introduction. In: Cook PJ, Shergold JH (eds) Phosphate deposits of the world, volume 1, Proterozoic and Cambrian phosphorites. Cambridge University Press, Cambridge, pp 1–8Google Scholar
  30. Cook PJ, Shergold JH (1986b) Proterozoic and Cambrian phosphorites - nature and origin. In: Cook PJ, Shergold JH (eds) Phosphate deposits of the world, volume 1, Proterozoic and Cambrian phosphorites. Cambridge University Press, Cambridge, pp 369–386Google Scholar
  31. Deb M, Thorpe RI (2004) Geochronological constraints in the Precambrian geology of Rajasthan and their metallogenic implications. In: Deb M, Goodfellow WD (eds) Sediment-hosted lead–zinc sulphide deposits. Narosa Publishing House, New Delhi, pp 246–263Google Scholar
  32. Dymek RF, Klein C (1988) Chemistry, petrology and origin of banded iron-formation lithologies from the 3800-Ma isua supracrustal belt, West Greenland. Precambrian Res 39:247–302Google Scholar
  33. El Albani A, Bengtson S, Canfield DE, Bekker A, Macchiarelli R, Mazurier A, Hammarlund EU, Boulvais P, Dupuy J-J, Fontaine C, Fuersich FT, Gauthier-Lafaye F, Janvier P, Javaux E, Ossa FO, Pierson-Wickmann A-C, Riboulleau A, Sardini P, Vachard D, Whitehouse M, Meunier A (2010) Large colonial organisms with coordinated growth in oxygenated environments 2.1 Gyr ago. Nature 466:100–104Google Scholar
  34. Ernst R, Bleeker W (2010) Large igneous provinces (LIPs), giant dyke swarms, and mantle plumes: significance for breakup events within Canada and adjacent regions from 2.5 Ga to the present. Can J Earth Sci 47:695–739Google Scholar
  35. Ewers WE, Morris RC (1981) Studies of the Dales Gorge Member of the Brockman Iron Formation, Western Australia. Econ Geol 76:1929–1953Google Scholar
  36. Fallick AE, Melezhik VA, Simonson BM (2008) The ancient anoxic biosphere was not as we know it. In: Dobretsov N, Kolchanov N, Rozanov A, Zavarzin G (eds) Biosphere origin and evolution. Springer, New York, pp 169–188Google Scholar
  37. Filippov MM (1994) Current views on the organic precursor of shungite rocks. In: Filippov MM (ed) The organic matter of Karelian Shungite Rocks: genesis, evolution and the methods of study. Karelian Science Centre, Petrozavodsk, pp 16–24 (in Russian)Google Scholar
  38. Föllmi KB (1995) 160 my record of marine sedimentary phosphorus burial: coupling of climate and continental weathering under greenhouse and icehouse conditions. Geology 23:859–862Google Scholar
  39. Föllmi KB (1996) The phosphorus cycle, phosphogenesis and marine phosphate-rich deposits. Earth Sci Rev 40:55–124Google Scholar
  40. Föllmi KB, Garrison RE (1991) Phosphatic sediments, ordinary or extraordinary deposits? The example of the Miocene Monterey Formation (California). In: Müller DW, McKenzie JA, Weissert H (eds) Controversies in modern geology. Academic, London, pp 55–84Google Scholar
  41. Froelich PN, Bender ML, Luedtke NA, Heath GR, DeVries T (1982) The marine phosphorus cycle. Am J Sci 282:474–511Google Scholar
  42. Galdobina LP (1987) Lyudikovian horizon. In: Sokolov VA (ed) The geology of Karelia. Nauka, Leningrad, pp 59–67 (in Russian)Google Scholar
  43. Gehör S (1994) REE distribution in the phosphorite bands within the Paleoproterozoic Tuomivaara and Pahtavaara iron-formations, central and northern Finland. Geol Surv Finl Spec Paper 19:71–83Google Scholar
  44. Glenn CR, Föllmi KB, Riggs SR, Baturin GN, Grimm KA, Trappe J, Abed AM, Galliolivier C, Garrison RE, Ilyin AV, Jehl C, Rohrlich V, Sadaqah RMY, Schidlowski M, Sheldon RE, Siegmund H (1994) Phosphorus and phosphorites: sedimentology and environments of formation. Eclogae Geol Helv 87:747–788Google Scholar
  45. Goddéris Y, Donnadieu Y, Dessert C, Dupré B, Fluteau F, François LM, Meert J, Nédélec A, Ramstein G (2007) Coupled modeling of global carbon cycle and climate in the Neoproterozoic: links between Rodinia breakup and major glaciations. C R Geosci 339:212–222Google Scholar
  46. Golubev AI, Akhmedov AM, Galdobina LP (1984) Geochemistry of lower Proterozoic black shale complexes of the Kola-Karelian Region. Science (Nauka), Leningrad, p 193 (in Russian)Google Scholar
  47. Göpel C, Manhès G, Allègre CJ (1994) U-Pb systematics of phosphates from equilibrated ordinary chondrites. Earth Planet Sci Lett 121:153–171Google Scholar
  48. Gorshkov AI, Baturin GN, Bogdanova OY, Magazina LO (2000) Sulfides in phosphorites of Africain Island; morphological peculiarities and origin. Lithol Miner Resour 35:183–188Google Scholar
  49. Gulbrandsen RA (1969) Physical and chemical factors in the formation of marine apatite. Econ Geol 64:365–382Google Scholar
  50. Halls HC, Davis DW, Stott GM, Ernst RE, Hamilton MA (2008) The Paleoproterozoic Marathon Large Igneous Province: new evidence for a 2.1 Ga long-lived mantle plume event along the southern margin of the North American superior province. Precambrian Res 162:327–353Google Scholar
  51. Hannah JL, Stein HJ, Zimmerman A, Yang G, Markey RJ, Melezhik VA (2006) Precise 2004 ± 9 Ma Re Os age for Pechenga black shale: comparison of sulfides and organic material. Geochim Cosmochim Acta 70:A228Google Scholar
  52. Hanski EJ (1992) Petrology of the Pechenga ferropicrites and cogenetic, Ni-bearing gabbro-wehrlite intrusions, Kola Peninsula, Russia. Geol Surv Finl Bull 367:1–192Google Scholar
  53. Heaman LM (1997) Global mafic magmatism at 2.45 Ga: remnants of an ancient large igneous province? Geology 25:299–302Google Scholar
  54. Heron AM (1953) The geology of central Rajputana. Geol Surv India Mem 79:1–389Google Scholar
  55. Jahnke RA (1992) The phosphorus cycle. In: Butcher SS, Charlson RJ, Orians GH, Wolfe GV (eds) Global biogeochemical cycles. Academic, San Diego, pp 301–315Google Scholar
  56. Jarvis I, Burnett WC, Nathan Y, Almbaydin FSM, Attia AKM, Castro LN, Flicoteaux R, Hilmy ME, Husain V, Qutawnah AA, Serjani A, Zanin YN (1994) Phosphorite geochemistry: state-of-the-art and environmental concerns. Eclogae Geol Helv 87:643–700Google Scholar
  57. Javaux EJ, Benzerara K (2009) Microfossils. C R Palevol 8:605–615Google Scholar
  58. Karhu JA (2005) Paleoproterozoic carbon isotope excursion. In: Lehtinen M, Nurmi PA, Rämö OT (eds) Precambrian geology of Finland: key to the evolution of the Fennoscandian shield. Elsevier, Amsterdam, pp 669–680Google Scholar
  59. Kazakov A (1938) Phosphorite facies and genesis of natural phosphates. Econ Geol Nonmetal Deposit 8:33–47Google Scholar
  60. Koistinen T, Stephens MB, Bogatchev V, Nordgulen Ø, Wenneström M, Korhonen J (comps.) (2001) Geological map of the Fennoscandian Shield, Scale 1:2 000 000, Espoo/Trondheim/Upsala/MoscowGoogle Scholar
  61. Krajewski KP, Vancappellen P, Trichet J, Kuhn O, Lucas J, Martinalgarra A, Prevot L, Tewari VC, Gaspar L, Knight RI, Lamboy M (1994) Biological processes and apatite formation in sedimentary environments. Eclogae Geol Helv 87:701–745Google Scholar
  62. Laajoki K (1975) Rare-earth elements in Precambrian iron formatins in Väyrylänkylä South Puolanka area, Finland. Geol Soc Finl Bull 47:93–107Google Scholar
  63. Laajoki K, Saikkonen R (1977) On the geology and geochemistry of the Precambrian irons formations in Väyrylänkylä South Puolanka area, Finland. Geol Surv Finl Bull 292:1–137Google Scholar
  64. Lamboy M (1993) Phosphatization of calcium carbonate in phosphorites; microstructure and importance. Sedimentology 40:53–62Google Scholar
  65. Lucas J, Prevot-Lucas L (2000) Phosphorite and limestone, two independent end-member products of the range of bio-productivity in shallow marine environments. Spec Publ Soc Sediment Geol 66:117–125Google Scholar
  66. Maheshwari A, Sial AN, Gaucher C, Bossi J, Bekker A, Ferreira VP, Romano AW (2010) Global nature of the Paleoproterozoic Lomagundi carbon isotope excursion: a review of occurrences in Brazil, India, and Uruguay. Precambrian Res 182:274–299Google Scholar
  67. Martens CS, Harris R (1970) Inhibition of apatite precipitation in the marine environment by magnesium ions. Geochim Cosmochim Acta 34:621–625Google Scholar
  68. Martin AP, Condon DJ, Prave AR, Melezhik VA, Fallick A (2010) Constraining the termination of the Lomagundi-Jatuli positive isotope excursion in the Imandra-Varzuga segment (Kola Peninsula, Russia) of the North Transfennoscandian Greenstone Belt by high-precision ID-TIMS, AGU meeting, 13–17 Dec 2010Google Scholar
  69. McArthur JM (1985) Francolite geochemistry; compositional controls during formation, diagenesis, metamorphism and weathering. Geochim Cosmochim Acta 49:23–35Google Scholar
  70. Melezhik VA (1992) Early Proterozoic sedimentary and rock-forming basins of the Baltic Shield. Nauka (Science), Leningrad, p 256 (in Russian)Google Scholar
  71. Melezhik VA, Fallick AE (1996) A widespread positive δ13Ccarb anomaly at around 2.33–2.06 Ga on the Fennoscandian Shield: a paradox? Terra Nova 8:141–157Google Scholar
  72. Melezhik VA, Predovsky AA (1978) Carbonate and silicate concretions in Precambrian metasedimentary rocks of the Kola Peninsula. Dokl USSR Acad Sci Geol 239(3):668–671 (in Russian)Google Scholar
  73. Melezhik VA, Predovsky AA (1982) Geochemistry of early Proterozoic Lithogenesis. Nauka (Science), St. Petersburg, p 208 (in Russian)Google Scholar
  74. Melezhik VA, Grinenko LN, Fallick AE (1998) 2000 Ma sulphide concretions from the ‘Productive’ Formation of the Pechenga Greenstone Belt, NW Russia: genetic history based on morphological and isotopic evidence. Chem Geol 148:61–94Google Scholar
  75. Melezhik VA, Fallick AE, Filippov MM, Larsen O (1999) Karelian shungite: an indication of 2000 Ma-year-old metamorphosed oil-shale and generation of petroleum: geology, lithology and geochemistry. Earth Sci Rev 47:11–40Google Scholar
  76. Melezhik VA, Fallick AE, Hanski EJ, Kump LR, Lepland A, Prave AR, Strauss H (2005) Emergence of an aerobic biosphere during the Archean-Proterozoic transition; challenges of future research. GSA Today 15:4–11Google Scholar
  77. Melezhik VA, Huhma H, Condon DJ, Fallick AE, Whitehouse MJ (2007) Temporal constraints on the Paleoproterozoic Lomagundi-Jatuli carbon isotopic event. Geology 35:655–658Google Scholar
  78. Melezhik VA, Fallick AE, Filippov MM, Lepland A, Rychanchik DV, Deines JE, Medvedev PV, Romashkin AE, Strauss H (2009) Petroleum surface oil seeps from Palaeoproterozoic petrified giant oilfield. Terra Nova 21:119–126Google Scholar
  79. Notholt AJG, Sheldon RP, Davidson DF (eds) (1989) Phosphate deposit of the world, vol 2, Phosphate rock resources. Cambridge University Press, Cambridge, p 563Google Scholar
  80. O’Brien GW, Veeh HH (1980) Holocene phosphorite on the East Australian continental margin. Nature 288:690–692Google Scholar
  81. Papineau D (2010) Global biogeochemical changes at both ends of the Proterozoic; insights from phosphorites. Astrobiology 10:165–181Google Scholar
  82. Papineau D, De Gregorio BT, Cody GD, O’Neil J, Steele A, Stroud RM, Fogel ML (2011) Young poorly crystalline graphite in the >3.8-Gyr-old Nuvvuagittuq banded iron formation. Nat Geosci 4:376–379Google Scholar
  83. Parák T (1973) Rare earths in the apatite iron ores of Lappland together with some data about the Sr, Th and U content of these ores. Econ Geol 68:210–221Google Scholar
  84. Pecoits E, Gingras MK, Barley ME, Kappler A, Posth NR, Konhauser KO (2009) Petrography and geochemistry of the Dales Gorge banded iron formation; paragenetic sequence, source and implications for palaeo-ocean chemistry. Precambrian Res 172:163–187Google Scholar
  85. Planavsky NJ, Rouxel OJ, Bekker A, Lalonde SV, Konhauser KO, Reinhard CT, Lyons TW (2010) The evolution of the marine phosphate reservoir. Nature 467:1088–1090Google Scholar
  86. Puchtel IS, Arndt NT, Hofmann AW, Haase KM, Kröner A, Kulikov VS, Kulikova VV, Garbe-Schönberg C-D, Nemchin AA (1998) Petrology of mafic lavas within the Onega plateau, central Karelia: evidence for the 2.0 Ga plume-related continental crustal growth in the Baltic Shield. Contrib Mineral Petrol 130:134–153Google Scholar
  87. Puchtel IS, Brügmann GE, Hofmann AW (1999) Precise Re-Os mineral isochron and Pb-Nd-Os isotope systematics of a mafic-ultramafic sill in the 2.0 Ga Onega plateau (Baltic Shield). Earth Planet Sci Lett 170:447–461Google Scholar
  88. Purohit R, Sanyal P, Roy AB, Bhattacharya SK (2010) 13C enrichment in the Palaeoproterozoic carbonate rocks of the Aravalli Supergroup, northwest India: influence of depositional environment. Gondwana Res 18:538–546Google Scholar
  89. Rehtijärvi P (1983) REE patterns for apatites from Proterozoic phosphatic metasediments, Finland. Bull Geol Soc Finl 55:77–82Google Scholar
  90. Rehtijärvi P, Äikäs O, Mäkelä M (1979) A middle Precambrian uranium- and apatite-bearing horizon associated with the Vihanti zinc ore deposit, western Finland. Econ Geol 74:1102–1117Google Scholar
  91. Roy AB, Paliwal BS (1981) Evolution of lower Proterozoic epicontinental deposits: stromatolite-bearing Aravalli rocks of Udaipur, Rajasthan, India. Precambrian Res 14:49–74Google Scholar
  92. Ruttenberg KC, Berner RA (1993) Authigenic apatite formation and burial in sediments from non-upwelling, continental-margin environments. Geochim Cosmochim Acta 57:991–1007Google Scholar
  93. Sarangi S, Gopalan K, Roy AB, Sreenivas B, Das Sharma S (2006) Pb–Pb age of the carbonates of Jhamarkotra formation constraining the age of the Aravalli Supergroup, Rajasthan. J Geol Soc India 67:442–446Google Scholar
  94. Savenko AV (2010) On the physicochemical mechanism of diagenetic phosphorite synthesis in the modern ocean. Geochem Int 48:194–201Google Scholar
  95. Schulz HN, Schulz HD (2005) Large sulfur bacteria and the formation of phosphorite. Science 307:416–418Google Scholar
  96. Sheldon RP (1980) Episodicity of phosphate deposition and deep ocean circulation: a hypothesis. SEPM Spec Publ 29:239–247Google Scholar
  97. Sreenivas B, Sharma SD, Kumar B, Patil DJ, Roy AB, Srinivasan R (2001) Positive [delta]13C excursion in carbonate and organic fractions from the Paleoproterozoic Aravalli Supergroup, Northwestern India. Precambrian Res 106:277–290Google Scholar
  98. Trendall AF, Blockley JG (1970) The iron formations of the Precambrian Hamersley group, Western Australia. Geol Surv West Aust Bull 119:1–366Google Scholar
  99. Tribovillard N, Récourt P, Trentesaux A (2010) Bacterial calcification as a possible trigger for francolite precipitation under sulfidic conditions. C R Geosci 342:27–35Google Scholar
  100. Vaasjoki M, Äikäs O, Rehtijärvi P (1980) The age of mid-Proterozoic phosphatic metasediments in Finland as indicated by radiometric U-Pb dates. Lithos 13:257–262Google Scholar
  101. Xiao S, Knoll AH (1999) Fossil preservation in the Neoproterozoic Doushantuo phosphorite Lagerstätte, South China. Lethaia 32:219–238Google Scholar
  102. Yudin NI (1996) Pre-Riphean phosphate genesis. Lithol Miner Res 31:286–292 (in Russian)Google Scholar
  103. Zhao G, Sun M, Wilde SA (2003) Correlations between the Eastern Block of the North China Craton and the South Indian Block of the Indian Shield: an Archaean to Palaeoproterozoic link. Precambrian Res 122:201–233Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Aivo Lepland
    • 1
  • Victor A. Melezhik
    • 1
    • 2
  • Dominic Papineau
    • 3
  • Alexander E. Romashkin
    • 4
  • Lauri Joosu
    • 5
  1. 1.Geological Survey of NorwayTrondheimNorway
  2. 2.Centre for GeobiologyUniversity of BergenBergenNorway
  3. 3.Department of Earth and Environmental SciencesBoston CollegeChestnut HillUSA
  4. 4.Institute of Geology, Karelian Research CentreRussian Academy of SciencesPetrozavodskRussia
  5. 5.Department of Geology, Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia

Personalised recommendations