7.6 Enhanced Accumulation of Organic Matter: The Shunga Event

  • Harald Strauss
  • Victor A. Melezhik
  • Aivo Lepland
  • Anthony E. Fallick
  • Eero J. Hanski
  • Michael M. Filippov
  • Yulia E. Deines
  • Christian J. Illing
  • Alenka E. Črne
  • Alex T. Brasier
Part of the Frontiers in Earth Sciences book series (FRONTIERS)


A number of sedimentary formations deposited globally around 2.0 Ga ago are characterised by high abundances of organic carbon. These formations often contain occurrences of highly concentrated, matured organic material representing metamorphosed oil, now pyrobitumen. Apart from their common names pyrobitumen or anthraxolite, different terminology has been used for these rocks within the pertinent literature, including shungite, thucolite, or Precambrian “coal”. Given their long and frequently complex geologic history, these sedimentary formations exhibit a variable and sometimes substantial degree of metamorphic (thermal) overprint. Consequently, many of them show undisputable signs of thermal mobilisation, migration and likely loss of hydrocarbons/bitumen. This includes the so-called shungite rocks on the Fennoscandian Shield.


Total Organic Carbon Source Rock Black Shale Total Organic Carbon Content Fennoscandian Shield 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahtonen N (1996) Geochemistry, mineralogy and petrophysics of black shales in the Northern Ostrobotnia schist belt with emphasis on ore prospecting. Unpublished M.Sc thesis, Department of Geology and Astronomy, University of Oulu, p 78, (in Finnish)Google Scholar
  2. Akhmedov AM, Krupenik VA (1990) Turbidity conditions of sedimentation and pyrite formation in the early Proterozoic Pechenga basin. Sov Geol 11:51–60 (in Russian)Google Scholar
  3. Arkimaa H, Hyvönen E, Lerssi J, Loukola-Ruskeeniemi K, Vanne J (2000) Proterozoic black shales and aeromagnetic anomalies in Finland, Scale 1: 1 000 000. Geological Survey of Finland, EspooGoogle Scholar
  4. Arthur MA, Sageman BB (1994) Marine black shales: depositional mechanism and environments of ancient deposits. Annu Rev Earth Planet Sci 22:499–551Google Scholar
  5. Avedisyan AA (1995) Lithologic-geochemical features of metasediments of the “productive unit” and Southern zone. In: Mitrofanov FP, Smolkin VF (eds) Magmatism, sedimentogenes and geodynamics of the Pechenga Palaeoriftogenic structure. Kola Research Centre, Apatity, pp 124–138 (in Russian)Google Scholar
  6. Bekasova NB (1985) Pechenga palaeogeography in early Pilgujärvi time of the early Proterozoic. Lithol Miner Resour 1:127–137 (in Russian)Google Scholar
  7. Bekker A, Karhu JA, Eriksson KA, Kaufman AJ (2003a) Chemostratigraphy of Paleoproterozoic carbonate successions of the Wyoming Craton: tectonic forcing of biogeochemical change? Precambrian Res 120:279–325Google Scholar
  8. Bekker A, Sial AN, Karhu JA, Ferreira VP, Noce CM, Kaufman AJ, Romano AW, Pimentel MM (2003b) Chemostratigraphy of carbonates from the Minas Supergroup, Quadrilátero Ferrifero, Brazil: a stratigraphic record of early Proterozoic atmospheric, biogeochemical and climatic change. Am J Sci 303:865–904Google Scholar
  9. Bekker A, Holmden C, Beukes NJ, Kenig F, Eglington B, Patterson WP (2008) Fractionation between inorganic and organic carbon during the Lomagundi (2.22–2.1 Ga) carbon isotope excursion. Earth Planet Sci Lett 271:278–291Google Scholar
  10. Berner RA (1993) Weathering and its effect on atmospheric CO2 over Phanerozoic time. Chem Geol 107:373–374Google Scholar
  11. Beukes NJ, Klein C, Kaufman AJ, Hayes JM (1990) Carbonate petrography, kerogen distribution and carbon ad oxygen isotope variations in an early Proterozoic transition from limestone to iron-formation deposition. Econ Geol 85:663–690Google Scholar
  12. Biske NC (1997) Carbon isotopic composition of graphite in Northern Ladoga area. In: Geology, petrography and geochemistry of Precambrian rocks of Karelia. Karelian Research Centre, Petrozavodzk, pp 37–40 (in Russian)Google Scholar
  13. Biske NC, Romashkin AE, Rychanchik DV (2004) Petrosavodsk peperite-structures of Lebestchina. In: Geology and mineral deposits. Proceedings of the Institute of Geology, Karelian Research Centre, vol 7, pp 193–199, Karelian Research Centre, Petrozavodsk (in Russian)Google Scholar
  14. Blankenship RE, Sadekar S, Raymond J (2007) The evolutionary transition from anoxygenic to oxygenic photosynthesis. In: Falkowski PG, Knoll AH (eds) The evolution of primary producers in the Sea. Elsevier, Boston, pp 21–35Google Scholar
  15. Bondesen E, Pedersen KR, Jørgensen O (1967) Precambrian organisms and the isotopic composition of organic remains in the Ketilidian of south-west Greenland. Grønlands Geologiske Undersøgelse Bulletin 67:1–41Google Scholar
  16. Bonhomme M, Gauthier-Lafaye F, Weber F (1982) An example of lower Proterozoic sediments: the Francevillain in Gabon. Precambrian Res 18:87–102Google Scholar
  17. Borisov PA (1956) The Karelian Shungites. Karelian Book Publisher, Petrozavodsk, p 92 (in Russian)Google Scholar
  18. Bradley DC (2008) Passive margins through earth history. Earth Sci Rev 91:1–26Google Scholar
  19. Brocks JJ, Logan GA, Buick R, Summons RE (1999) Archean molecular fossils and the early rise of eukaryotes. Science 285:1033–1036Google Scholar
  20. Brocks JJ, Love GD, Snape CE, Logan GA, Summons RE, Buick R (2003) Release of bound aromatic hydrocarbons from late Archean and Mesoproterozoic kerogens via hydropyrolysis. Geochim Cosmochim Acta 67:1521–1530Google Scholar
  21. Brocks JJ, Love GD, Summons RE, Knoll AH, Logan GA, Bowden SA (2005) Biomarker evidence for green and purple sulphur bacteria in a stratified Palaeoproterozoic sea. Nature 437:866Google Scholar
  22. Bruneau PMC, Ostle N, Davidson DA, Grieve IC, Fallick AE (2002) Determination of rhizosphere 13C pulse signals in soil thin sections by laser ablation isotope ratio mass spectrometry. Rapid Commun Mass Spectrom 16:2190–2194Google Scholar
  23. Buseck PR, Tsipursky SJ, Hettich R (1992) Fullerenes from the geological environment. Science 257:215–217Google Scholar
  24. Buseck PR, Galdobina LP, Kovalevski VV, Rozhkova NN, Valley JW, Zaidenberg AZ (1997) Shungites: the C-rich rocks of Karelia, Russia. Can Mineralogist 35:1363–1378Google Scholar
  25. Chadwick B, Claeys P, Simonson B (2001) New evidence for a large Palaeoproterozoic impact: spherules in a dolomite layer in the Ketilidian orogen, South Greenland. J Geol Soc 158:331–340Google Scholar
  26. Clarke RH, Cleverly RW (1990) Leakage and post accumulation migration. In: England WA, Fleet AJ (eds) Caprocks and seals. Geol Soc Lon, Spec Pub 59:265–271Google Scholar
  27. Condie KC (2004) Precambrian superplume events. In: Eriksson PG, Altermann W, Nelson DR, Mueller WU, Catuneanu O (eds) The Precambrian Earth: tempos and events, development in Precambrian geology, vol 12. Elsevier B.V., Amsterdam, pp 163–173Google Scholar
  28. Cortial F, Gauthier-Lafaye F, Lacrampe-Couloume G, Oberlin A, Weber F (1990) Characterization of organic matter associated with uranium deposits in the Francevillian Formation of Gabon (Lower Proterozoic). Org Geochem 15:73–85Google Scholar
  29. Des Marais DJ (2001) Isotopic evolution of the biogeochemical carbon cycle during the Precambrian. Rev Mineral Geochem 43:555–578Google Scholar
  30. Dutkiewicz A, Volk H, George SC, Ridley J, Buick R (2006) Biomarkers from Huronian oil-bearing fluid inclusions: an uncontaminated record of life before the great oxidation event. Geology 34:437–440Google Scholar
  31. Dutkiewicz A, George SC, Mossman DJ, Ridley J, Volk H (2007) Oil and its biomarkers associated with the Palaeoproterozoic Oklo natural fission reactors, Gabon. Chem Geol 244:130–154Google Scholar
  32. Ebbesen TW, Hiura H, Hedenquist JW, De Ronde CEJ, Andersen A, Often M, Melezhik VA (1995) Origin of fullerenes in rocks. Science 268:1634–1635Google Scholar
  33. Eigenbrode JL, Freeman KH (2006) Late Archean rise of aerobic microbial ecosystems. Proc Natl Acad Sci USA 103:15759–15764Google Scholar
  34. Eriksson PG, Catuneanu O, Sarkar S, Tirsgaard H (2005) Patterns of sedimentation in the Precambrian. Sediment Geol 176:17–42Google Scholar
  35. Ernst R, Bleeker W (2010) Large igneous provinces (LIPs), giant dyke swarms, and mantle plumes: significance for breakup events within Canada and adjacent regions from 2.5 Ga to the Present. Can J Earth Sci 47:695–739Google Scholar
  36. Fallick AE, Melezhik VA, Simonson B (2008) The ancient anoxic biosphere was not as we know it. In: Dobretsov N, Kolchanov N, Rozanov A, Zavarzin G (eds) Biosphere origin and evolution. Springer Science+Business Media, New York, pp 169–188Google Scholar
  37. Fallick AE, Melezhik VA, Simonson B (2011) On Proterozoic ecosystems and the carbon isotopic composition of carbonates associated with banded iron formations. In: Neves L et al (eds) Modelacao de Sistemas Geologicos. Universidade de Coimbra, Portugal, pp 57–71Google Scholar
  38. Filippov MM (1994) Current views on the organic precursor of shungite rocks. In: Filippov MM (ed) The organic matter of Karelian Shungite rocks (genesis, evolution and the methods of study). Karelian Research Centre, Petrozavodsk, pp 16–24, (in Russian)Google Scholar
  39. Filippov MM (2000) Formational model of shungite deposits in the Onega Synclinorium. Doctoral thesis, St. Petersburg University, p 310 (in Russian)Google Scholar
  40. Filippov MM (2002) Shungite rocks of the Onega structure. Karelian Research Centre, Petrozavodsk, p 280 (in Russian)Google Scholar
  41. Filippov MM, Golubev AI (1994) Carbon isotope composition of shungite rocks. In: Filippov MM (ed) The organic matter of Karelian Shungite rocks (genesis, evolution and the methods of study). Karelian Research Centre, Petrozavodsk, pp 32–43 (in Russian)Google Scholar
  42. Filippov MM, Romashkin AE (1994) Shungite rocks. Karelian Research Centre, Petrozavodsk, p 89 (in Russian)Google Scholar
  43. Filippov MM, Golubev AI, Romashkin AE, Rychanchik DV (1994) Mineral constituent of shungite-bearing rocks: primary composition, sources and relation to shungite matter. In: Filippov MM (ed) The organic matter of Karelian Shungite rocks (genesis, evolution and the methods of study). Karelian Research Centre, Petrozavodsk, pp 78–93 (in Russian)Google Scholar
  44. Filippov MM, Melezhik VA et al (eds) (2007) Atlas of textures and structures of shungite rocks of the Onega Synclinorium. Scandinavia, Petrozavodsk, p 80 (in Russian)Google Scholar
  45. Galdobina LP (1987) The Ludicovian horizon. In: Sokolov VA (ed) The geology of Karelia. Nauka, Leningrad, pp 59–67 (in Russian)Google Scholar
  46. Galdobina LP, Schidlowski M, Matzigkait U, Sokolov VA (1984) Isotopic study of early Proterozoic shungite, Karelia. In: Abstract volume II, 27th international geological congress, Moscow, p 292 (in Russian)Google Scholar
  47. Galdobina LP, Kalinin YK, Kupryakov SV (1986) Endogenic origin of the Karelian shungite rocks. Abstract, the 2nd all-union symposium on carbon geochemistry, GEOKHI, Moscow, pp 79–81 (in Russian)Google Scholar
  48. Garvin J, Buick R, Anbar AD, Arnold GL, Kaufman AJ (2009) Isotopic evidence for an aerobic nitrogen cycle in the latest Archean. Science 323:1045–1048Google Scholar
  49. Gauthier-Lafaye F, Weber F (1989) The Francevillian (Lower Proterozoic) uranium ore deposits of Gabon. Econ Geol 84:2267–2285Google Scholar
  50. Geothermal Gradients (2011) Accessed 3 May 2011
  51. Golubic S, Hofmann HJ (1976) Comparison of Holocene and mid-Precambrian Entophysalidaceae (Cyanophyta) in stromatolitic algal mats: cell division and degradation. J Paleontol 50:1074–1082Google Scholar
  52. Gorlov VI (1984) The Onega shungite (geology, genesis and economic potential), D.Sc. thesis, Leningrad, p 20 (in Russian)Google Scholar
  53. Graham CM, Harmon RS (1983) Stable isotope evidence on the nature of crust-mantle interaction. In: Hawkesworth CJ, Norry MJ (eds) Continental basalts and mantle xenoliths. Shiva, Nantwich, pp 20–45Google Scholar
  54. Grapes RH (2006) Pyrometamorphism. Springer, Berlin/Heidelberg, p 275Google Scholar
  55. Gretener PE (1969) Fluid pressure in porous media – its importance in geology, a review. Bull Can Petrol Geol 17:255–295Google Scholar
  56. Grotzinger JP, Knoll AH (1999) Proterozoic stromatolites: evolutionary mileposts or environmental dipsticks? Annu Rev Earth Planet Sci 27:313–358Google Scholar
  57. Hannah JL, Stein HJ, Bekker A, Markey RJ, Holland HD (2003) Chondritic initial 187Os/188Os in Paleoproterozoic shale (seawater) and the onset of oxidative weathering. Geochim Cosmochim Acta 67:A-34Google Scholar
  58. Hannah JL, Stein HJ, Zimmerman A, Yang G, Melezhik VA, Filippov MM, Turgeon SC, Creaser RA (2008) Re-Os geochronology of a 2.05 Ga fossil oil field near Shunga, Karelia, NW Russia. In: Abstract, the 33rd international geological congress, Oslo, 6–14 Aug 2008Google Scholar
  59. Hanski EJ (1992) Petrology of the Pechenga ferropicrites and cogenetic, Ni-bearing gabbro-wehrlite intrusions, Kola Peninsula, Russia. Bull Geol Surv Finl 367:1–192Google Scholar
  60. Hanski E, Huhma H (2005) Central Lapland greenstone belt. In: Lehtinen M, Nurmi PA, Rämö OT (eds) Precambrian geology of Finland – key to the evolution of the Fennoscandian Shield. Elsevier, Amsterdam, pp 139–194Google Scholar
  61. Hayes JM (1993) Factors controlling 13C contents of sedimentary organic compounds: principles and evidence. Mar Geol 113:111–125Google Scholar
  62. Hayes JM (1994) Global methanotrophy at the Archean-Proterozoic transition. In: Bengtson S (ed) Early life on Earth. Columbia University Press, New York, pp 220–236Google Scholar
  63. Hayes JM, Waldbauer JR (2006) The carbon cycle and associated redox processes through time. R Soc Lond Philos Trans Ser B Biol Sci B361:931–950Google Scholar
  64. Hayes JM, Kaplan IR, Wedeking KW (1983) Precambrian organic geochemistry, preservation of the record. In: Schopf JW (ed) Earth’s earliest biosphere: its origin and evolution. Princeton University Press, Princeton, pp 93–134Google Scholar
  65. Hayes JM, Strauss H, Kaufman AJ (1999) The abundance of 13C in marine organic matter and isotopic fractionation in the global biogeochemical cycle of carbon during the past 800 Ma. Chem Geol 161:103–125Google Scholar
  66. Hazov RA, Hazova VI (1982) Area of Pitkäranta (Northern Ladoga). In: Sokolov VA (ed) Geology of shungite bearing volcanic and sedimentary rocks of Palaeoproterozoic of Karelia. Karelian Research Centre, Petrozavodzk, pp 63–75 (in Russian)Google Scholar
  67. Hedberg HD (1974) Relation of methane generation to under compacted shales, shale diapirs, and mud volcanoes. Bull Am Assoc Petrol Geologists 58:661–673Google Scholar
  68. Hoefs J (2009) Stable isotope geochemistry, Sixth revised and updated edition. Springer, Berlin, p 201Google Scholar
  69. Hofmann HJ (1976) Precambrian microflora, Belcher Islands, Canada: significance and systematic. J Palaeontol 50:1040–1073Google Scholar
  70. Holland HD (2002) Volcanic gases, black smokers, and the great oxidation event. Geochim Cosmochim Acta 66:3811–3826Google Scholar
  71. Holland HD (2006) The oxygenation of the atmosphere and oceans. Philos Trans R Soc Lond B Biol Sci B361:903–915Google Scholar
  72. Honkamo M (1985) On the Proterozoic metasedimentary rocks of the Northern Pohjanmaa schist area, Finland. Bull Geol Surv Finl 331:117–129Google Scholar
  73. Hunt JM (1996) Petroleum geochemistry and geology. W.H. Freeman & Co, New York, p 743Google Scholar
  74. Inostranzev AA (1885) Geology. General lecture course for students of the St.-Petersburg University, vol 1, 2nd edn. St-Petersburg University, St-Petersburg (in Russian)Google Scholar
  75. Inostranzev AA (1886) Once more on shungite. Mining J 2:35–45 (in Russian)Google Scholar
  76. Irwin H, Curtis C, Coleman M (1977) Isotopic evidence for the source of diagenetic carbonate during burial of organic-rich sediments. Nature 269:209–213Google Scholar
  77. Jiracek GR, Ander ME, Holcomber HT (1986) Magnetotelluric soundings of crustal conductive zones in major continental rifts. In: Riecker RE (ed) Rio grande rift: tectonics and magmatism. American Geophysical Union, Washington, DC, pp 209–222Google Scholar
  78. Karhu JA (1993) Palaeoproterozoic evolution of the carbon isotope ratios of sedimentary carbonates in the Fennoscandian Shield. Bull Geol Surv Finl 371:1–87Google Scholar
  79. Khavari-Khorasani G, Murchison DG (1979) The nature of Karelian shungite. Chem Geol 26:165–182Google Scholar
  80. Knoll AH, Summons RE, Waldbauer JR, Zumberge J (2007) The geological succession of primary producers in the Oceans. In: Falkowski PG, Knoll AH (eds) The evolution of primary producers in the Sea. Elsevier, Boston, pp 133–163Google Scholar
  81. Koistinen T, Stephens MB, Bogatchev V, Nordgulen Ø, Wenneström M, Korhonen J (comps.) (2001) Geological map of the Fennoscandian Shield, Scale 1:2 000 000. Espoo/Trondheim/Upsala/MoscowGoogle Scholar
  82. Kontinen A (1987) An early Proterozoic ophiolite – the Jormua mafic–ultramafic complex, northeastern Finland. Precambrian Res 35:313–341Google Scholar
  83. Korja T, Tuisku P, Pernu T, Karhu J (1996) Field, petrophysical and carbon isotope studies on the Lapland Granulite Belt: implications for deep continental crust. Terra Nova 8:48–58Google Scholar
  84. Kovalevski VV, Buseck PR, Cowley JM (2001) Comparison of carbon in shungite rocks to other natural carbons: an X-ray and TEM study. Carbon 39:243–256Google Scholar
  85. Krupenik VA, Akhmedov AM, Sveshnikova KYu (2011a) The section of the Onega structure based on the Onega parametric drillhole. In: Glushanin LV, Sharov NV, Shchiptsov VV (eds) The Onega Palaeoproterozoic structure (Geology, tectonics, deep structure and minerageny). Karelian Research Centre, Petrozavodsk, pp. 172–189 (in Russian).Google Scholar
  86. Krupenik, V.A., Akhmedov, A.M., and Sveshnikova, K.Yu., (2011b) Isotopic composition of carbon, oxygen and sulphur in the Ludicovian and Jatulian rocks. In: Glushanin LV, Sharov NV, Shchiptsov VV (eds) The Onega Palaeoproterozoic structure (Geology, tectonics, deep structure and minerageny). Karelian Research Centre, Petrozavodsk, pp. 250–255 (in Russian).Google Scholar
  87. Kupryakov SV (1994) Geology and genesis of shungite rocks at Zazhogino. In: Filippov MM (ed) The organic matter of Karelian Shungite rocks (genesis, evolution and the methods of study). Karelian Research Centre, Petrozavodsk, pp 93–98 (in Russian)Google Scholar
  88. Kupryakov SV, Mikhailov VP (1988) Zazhogino deposit of shungite rocks. In: News in geology of the North-West of the RSFSR. Science (Nauka), Moscow, pp 9–86 (in Russian)Google Scholar
  89. Lahtinen R, Huhma H, Kontinen A, Kohonen J, Sorjonen-Ward P (2010) New constraints for the source characteristics, deposition and age of the 2.1–1.9 Ga metasedimentary cover at the western margin of the Karelian Province. Precambrian Res 176:77–93Google Scholar
  90. Lancea S, Henrya P, Le Pichona X, Lallemanta S, Chamleyb H, Rostekc F, Faugèresd J-C, Gonthierd E, Olue K (1998) Submersible study of mud volcanoes seaward of the Barbados accretionary wedge: sedimentology, structure and rheology. Mar Geol 145:255–292Google Scholar
  91. Lehtonen M, Airo M-L, Eilu P, Hanski E, Kortelainen V, Lanne E, Manninen T, Rastas P, Räsänen J, Virransalo P (1998) The stratigraphy, petrology and geochemistry of the Kittilä greenstone area, northern Finland. A report of the Lapland volcanite project. Geol Surv Finl, Rep Invest 140:1–144 (in Finnish with English summary)Google Scholar
  92. Loukola-Ruskeeniemi K (1991) Geochemical evidence for a hydrothermal origin of sulphur, base metals and gold in Proterozoic metamorphosed black shales, Kainuu and Outokumpu areas, Finland. Miner Deposita 26:152–164Google Scholar
  93. Loukola-Ruskeeniemi K (1999) Origin of black shales and the serpentinite-associated Cu-Zn-Co ores at Outokumpu, Finland. Econ Geol 94:1007–1028Google Scholar
  94. Loukola-Ruskeeniemi K (2011) Graphite- and sulphide-bearing schists in the Outokumpu R2500 drill core: comparison with the Ni-Cu-Co-Zn-Mn-rich black schists at Talvivaara, Finland. Geol Surv Finl, Spec Pap 51:229–252Google Scholar
  95. Loukola-Ruskeeniemi K, Heino T (1996) Geochemistry and genesis of the black shale-hosted Ni-Cu-Zn deposit at Talvivaara, Finland. Econ Geol 91:80–110Google Scholar
  96. Loukola-Ruskeeniemi K, Heino T, Talvitie J, Vanne J (1991) Base-metal-rich metamorphosed black shales associated with Proterozoic ophiolites in the Kainuu schist belt, Finland: a genetic link with the Outokumpu rock assemblage. Miner Deposita 26:143–151Google Scholar
  97. Lukkarinen H (2008) Pre-Quaternary rocks of the Siilinjärvi and Kuopio map-sheet areas. Explanation to the maps of Pre-Quaternary rocks, sheets 3331 and 3242. Geological Survey of Finland, Espoo, p 228 (in Finnish with English summary)Google Scholar
  98. Lyell C (1830) Principles of geology. John Murry, London, p 586Google Scholar
  99. Macaulay CM, Fallick AE, Haszeldine RS, Graham CM (2000) Methods of laser-based stable isotope measurement applied to diagenetic cements and hydrocarbon reservoir quality. Clay Mineral 35:313–322Google Scholar
  100. Mancuso JJ, Kneller WA, Quick J (1989) Precambrian vein pyrobitumen: evidence for petroleum generation and migration 2 Ga ago. Precambrian Res 44:137–146Google Scholar
  101. Manninen T (1991) Volcanic rocks in the Salla area, northeastern Finland. A report of the Lapland volcanite project. Geol Surv Finl, Rep Invest 104:1–97 (in Finnish with English summary)Google Scholar
  102. Master S, Bekker A, Hofmann A (2010) A review of the stratigraphy and geological setting of the Palaeoproterozoic Magondi Supergroup, Zimbabwe – type locality for the Lomagundi carbon isotope excursion. Precambrian Res 182:254–273Google Scholar
  103. McKirdy DM (1974) Organic geochemistry in Precambrian research. Precambrian Res 1:75–137Google Scholar
  104. McKirdy DM, Imbus SW (1992) Precambrian petroleum: a decade of changing perceptions. In: Schidlowski M, Golubic S, Kimberley MM, McKirdy DM, Trudinger PA (eds) Early organic evolution: implications for mineral and energy resources. Springer, Berlin, pp 176–192Google Scholar
  105. Melezhik VA (1992) Early Proterozoic sedimentary and rock-forming basins of the Baltic Shield. Nauka (Science), Leningrad, p 256 (in Russian)Google Scholar
  106. Melezhik VA, Predovsky AA (1982) Geochemistry of early Proterozoic lithogenesis. Nauka (Science), St. Leningrad, p 208 (in Russian)Google Scholar
  107. Melezhik VA, Basalaev AA, Predovsky AA, Balabonin NL, Bolotov VI, Pavlova MA, Gavrilenko BV, Abzalov MZ (1988) Carbonaceous deposits of the earliest stages of earth evolution (geochemistry and depositional environments on the Baltic Shield). Nauka (Science), Leningrad, p 197 (in Russian)Google Scholar
  108. Melezhik VA, Fallick AE, Filippov MM, Larsen O (1999a) Karelian shungite an indication of 2000 Ma-year-old metamorphosed oil-shale and generation of petroleum: geology, lithology and geochemistry. Earth Sci Rev 47:1–40Google Scholar
  109. Melezhik VA, Fallick AE, Medvedev PV, Makarikhin VV (1999b) Extreme 13Ccarb enrichment in ca. 2.0 Ga magnesite-stromatolitedolomite-“ red beds” association in a global context: a case for the world-wide signal enhanced by a local environment. Earth Sci Rev 48:71–120Google Scholar
  110. Melezhik VA, Filippov MM, Romashkin AE (2004) A giant Palaeoproterozoic deposit of shungite in NW Russia: genesis and practical applications. Ore Geol Rev 24:135–154Google Scholar
  111. Melezhik VA, Fallick AE, Filippov MM, Lepland A, Rychanchik DV, Deines YE, Medvedev PV, Romashkin AE, Strauss H (2009) Petroleum surface oil seeps from a Palaeoproterozoic petrified giant oilfield. Terra Nova 21:119–126Google Scholar
  112. Mishunina ZA (1979) Petroleum genesis in carbonate formations. In: Nalivkin VD, Ivanchuk PK, Dvali MF (eds) Problems in the geology of oil and gas. Nedra, Leningrad, pp 139–143 (in Russian)Google Scholar
  113. Morozov AF, Hakhaev BN, Petrov OV, Gorbachev VI, Tarkhanov GB, Tsvetkov LD, Erinchek YuM, Akhmedov AM, Krupenik VA, Sveshnikova KYu (2010) Rock-salts in Palaeoproterozoic strata of the Onega depression of Karelia (based on data from the Onega parametric drillhole). Trans Acad Sci 435(2):230–233 (in Russian)Google Scholar
  114. Mossman D, Eigendorf G, Tokaryk D, Gauthier-Lafaye F, Guckert KD, Melezhik VA, Farrow CEG (2003) Testing for fullerenes in geologic materials: Oklo carbonaceous substances, Karelian shungites, Sudbury Black Tuff. Geology 31:255–258Google Scholar
  115. Mossman DJ, Gauthier-Lafaye F, Jackson SE (2005) Black shales, organic matter, ore genesis and hydrocarbon generation in the Paleoproterozoic Franceville Series, Gabon. Precambrian Res 137:253–272Google Scholar
  116. Mutanen T, Huhma H (2001) U-Pb geochronology of the Koitelainen, Akanvaara and Keivitsa layered intrusions and related rocks. In: Vaasjoki M (ed) Radiometric age determinations from Finnish Lapland and their bearing on the timing of Precambrian volcano-sedimentary sequences. Geol Surv Finl, Spec Pap 33:229–246Google Scholar
  117. Neruchev SG, Rogosina EA, Shimansky BK (1998) Reference on petroleum and gas geochemistry. Nedra, St. Petersburg, p 575 (in Russian)Google Scholar
  118. Onuma N, Clayton RN, Mayeda TK (1972) Oxygen isotope cosmothermometer. Geochim Cosmochim Acta 36:169–188Google Scholar
  119. Ovchinnikova GV, Kusnetzov AB, Melezhik VA, Gorokhov IM, Vasiĺeva IM, Gorokhovsky BM (2007) Pb-Pb age of Jatulian carbonate rocks: the Tulomozero Formation in south-eastern Karelia. Stratigr Geol Correl 4:20–33Google Scholar
  120. Paakkola J (1971) The volcanic complex and associated manganiferous iron formation of the Porkonen-Pahtavaara area in Finnish Lapland. Bull Geol Surv Finl 247:1–83Google Scholar
  121. Paakkola J, Gehör S (1988) The lithofacies associations and sedimentary structures of the iron-formations in the early Proterozoic Kittilä greenstone belt, northern Finland. Geol Surv Finl, Spec Pap 5:213–238Google Scholar
  122. Papineau D, Purohit R, Goldberg T, Pi D, Shields G, Bhu HR, Steele A, Fogel ML (2009) High productivity and nitrogen cycling after the Paleoproterozoic phosphogenic event in the Aravalli Supergroup, India. Precambrian Res 171:37–56Google Scholar
  123. Pekkarinen L (1979) The Karelian formations and their depositional basement in the Kiihtelysvaara-Tohmajärvi district, eastern Finland. Bull Geol Surv Finl 301:1–141Google Scholar
  124. Pekkarinen LJ, Lukkarinen H (1991) Paleoproterozoic volcanism in the Kiihtelysvaara – Tohmajärvi district, eastern Finland. Bull Geol Surv Finl 357:1–30Google Scholar
  125. Peltonen P (2005) Ophiolites. In: Lehtinen M, Nurmi PA, Rämö OT (eds) Precambrian geology of Finland – key to the evolution of the Fennoscandian Shield. Elsevier, Amsterdam, pp 237–278Google Scholar
  126. Peng Y, Baoa H, Yuan X (2009) New morphological observations for Paleoproterozoic acritarchs from the Chuablinggou Formation, North China. Precambrian Res 168:223–232Google Scholar
  127. Perttunen V, Hanski E (2003) Pre-Quaternary rocks of the Koivu and Törmäsjärvi map-sheet areas. Explanation to the geological map of Finland 1:100 000, pre-Quaternary rocks, sheets 3631 and 2633. Geological Survey of Finland, Espoo, p 88 (in Finnish with English summary)Google Scholar
  128. Prokoph A, Shields GA, Veizer J (2009) Compilation and time-series analysis of a marine carbonate δ18O, δ13C, 87Sr/86Sr and δ34S database through Earth history. Earth Sci Rev 87:113–133Google Scholar
  129. Puchtel IS, Zhuravlev DZ, Ashikhmina NA, Kulikov VS, Kulikova VV (1992) Sm-Nd age of the Suisarian suite on the Baltic Shield. Trans Russ Acad Sci 326:706–711 (in Russian)Google Scholar
  130. Puchtel IS, Arndt NT, Hofmann AW, Haase KM, Kröner A, Kulikov VS, Kulikova VV, Garbe-Schönberg C-D, Nemchin AA (1998) Petrology of mafic lavas within the Onega plateau, central Karelia: evidence for the 2.0 Ga plume-related continental crustal growth in the Baltic Shield. Contrib Mineral Petr 130:134–153Google Scholar
  131. Puchtel IS, Brügmann GE, Hofmann AW (1999) Precise Re-Os mineral isochron and Pb-Nd-Os isotope systematics of a mafic-ultramafic sill in the 2.0 Ga Onega plateau (Baltic Shield). Earth Planet Sci Lett 170:447–461Google Scholar
  132. Rankama K (1948) New evidence on the origin of pre-Cambrian carbon. Bull Geol Soc Am 59:389–416Google Scholar
  133. Rasmussen B, Fletcher IR, Brocks JJ, Kilburn MR (2008) Reassessing the first appearance of eukaryotes and cyanobacteria. Nature 455:1101–1105Google Scholar
  134. Redfield AC (1958) The biological control of chemical factors in the environment. Am Sci 46:205–221Google Scholar
  135. Ryabov NI (1948) Description of the Karelian shungite deposits. Unpublished report 1314, Karelian geological expedition, p 51 (Russian)Google Scholar
  136. Schidlowski M (1988) A 3,800-million-year isotopic record of life from carbon in sedimentary rocks. Nature 333:313–318Google Scholar
  137. Schidlowski M, Appel PWU, Eichmann R, Junge CE (1979) Carbon isotope geochemistry of the 3.7. 109 yr-old Isua sediments, West Greenland: implications for the Archaean carbon and oxygen cycles. Geochim Cosmochim Acta 43:189–199Google Scholar
  138. Schidlowski M, Hayes JM, Kaplan IR (1983) Isotopic inferences of ancient biochemistries: carbon, sulfur, hydrogen, and nitrogen. In: Schopf JW (ed) Earth’s earliest biosphere: its origin and evolution. Princeton University Press, Princeton, pp 149–186Google Scholar
  139. Schlesinger WH (1997) Biogeochemistry – an analysis of global change, 2nd edn. Academic, San Diego, p 588Google Scholar
  140. Shatzky GV (1990) Isotope composition of sulphides from the Zazhogino shungite deposit. Lithol Mineral Deposits 1:20–28 (in Russian)Google Scholar
  141. Sheppard SMF (1977) The Cornubian batholiths, SW England: D/H and 18O/16O studies of kaolinite and other alteration minerals. J Geol Soc Lond 133:573–591Google Scholar
  142. Shields G, Veizer J (2002) Precambrian marine carbonate isotope database: version 1.1. Geochem Geophys Geosyst 3:1–12Google Scholar
  143. Silvennoinen A (1972) On the stratigraphic and structural geology of the Rukatunturi area, northeastern Finland. Geol Surv Finl Bull 257:1–48Google Scholar
  144. Skilling IP, White JDL, McPhie J (2002) Peperite: a review of magma–sediment mingling. J Volcanol Geotherm Res 114:1–7Google Scholar
  145. Sozinov NA, Chistyakova NN, Kazantsev VA (1988) Metallogenic black shales of the Kursk Magnetic anomaly. Nauka (Science), Moscow, p 149 (in Russian)Google Scholar
  146. Stadnitskaia A, Ivanov MK, Poludetkina EN, Kreulen R, van Weering TCE (2008) Sources of hydrocarbon gases in mud volcanoes from the Sorokin Trough, NE Black Sea, based on molecular and carbon isotopic compositions. Mar Petrol Geol 25:1040–1057Google Scholar
  147. Strauss H, Moore TB (1992) Abundances and isotopic compositions of carbon and sulphur species in whole rock and kerogen. In: Schopf JW, Klein C (eds) The Proterozoic biosphere: a multidisciplinary study. Cambridge University Press, Cambridge, pp 709–797Google Scholar
  148. Strauss H, Des Marais DJ, Summons RE, Hayes JM (1992) The carbon-isotopic record. In: Schopf JW, Klein C (eds) The Proterozoic biosphere: a multidisciplinary study. Cambridge University Press, Cambridge, pp 117–127Google Scholar
  149. Summons RE, Jahnke LL, Hope JM, Logan GA (1999) 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature 400:554–557Google Scholar
  150. Taran LN, Onoshko MP, Mikhailov ND (2011) Structure and composition of organic matter and isotope geochemistry of the Palaeoproterozoic graphite and sulphide-rich metasedimentary rocks from the Outokumpu deep drill hole, eastern Finland. In: Kukkonen IT (ed) Outokumpu deep drilling project 2003–2010. Geol Surv Finl, Spec Pap 51:219–228Google Scholar
  151. Taylor HP (1974) The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and deposition. Econ Geol 69:843–883Google Scholar
  152. Taylor HP, Sheppard SMF (1986) Igneous rocks: I. Processes of isotopic fractionation and isotope systematics. Rev Mineral 16:227–271Google Scholar
  153. Thomazo C, Pinti D, Busigny V, Ader M, Hashizume K, Philippot P (2009) Biological activity and the Earth’s surface evolution: insights from carbon, sulfur, nitrogen and iron stable isotopes in the rock record. C R Palevol 8:665–678Google Scholar
  154. Thomazo C, Ader M, Philippot P (2011) Extreme 15N-enrichments in 2.72-Gyr-old sediments: evidence for a turning point in the nitrogen cycle. Geobiology 9:107–120Google Scholar
  155. Tissot BP, Welte DH (1984) Petroleum formation and occurrence. Springer, Berlin, p 699Google Scholar
  156. Veizer J, Ala D, Azmy K, Bruckschen P, Buhl D, Bruhn F, Carden GAF, Diener A, Ebneth S, Godderis Y, Jasper T, Korte C, Pawellek F, Podlaha OG, Strauss H (1999) 87Sr/86Sr, δ13C and evolution of Phanerozoic seawater. Chem Geol 161:59–88Google Scholar
  157. Weber F, Schidlowski M, Arneth JD, Gauthier-Lafaye F (1983) Carbon isotope geochemistry of the lower proterozoic Francevillian series of Gabon (Africa). Terra Cognita 3:220Google Scholar
  158. Wilton DHC (1996) Palaeoproterozoic, 1.88–2.0 Ga, organic matter from the Mugford Kaumajet mountain group, northern Labrador. Precambrian Res 77:131–141Google Scholar
  159. Winter BL, Knauth LP (1992) Stable isotope geochemistry of cherts and carbonates from the 2.0 Ga Gunflint iron formation: implications for the depositional setting, and the effects of diagenesis and metamorphism. Precambrian Res 59:283–313Google Scholar
  160. Worden KE, Carson CJ, Scrimgeour IR, Lally JH, Doyle N (2008) A revised Palaeoproterozoic chronostratigraphy for the central Pine Creek Orogen, northern Australia: evidence from SHRIMP U-Pb zircon geochronology. Precambrian Res 166:122–144Google Scholar
  161. Yudovich YE, Makarikhin VV, Medvedev PV, Sukhanov NV (1991) Carbon isotope anomalies in carbonates of the Karelian Complex. Geochem Int 28:56–62Google Scholar
  162. Zakrutnin VE, Zhmur SI (1989) Carbonaceous-rich formation in the Kursk magentic anomaly, lower Proterozoic. Rostov University, Rostov on Don, p 125 (in Russian)Google Scholar
  163. Zhang Z (1986) Clastic facies microfossils from the Chuanlinggou Formation (1800 Ma) near Jixian, North China. J Micropalaeontol 5:9–16Google Scholar
  164. Zhao G, Cawood PA, Wilde A, Sun M (2002) Review of global 2.1–1.8 Ga orogens: implications for a pre-Rodinia supercontinent. Earth Sci Rev 59:125–162Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Harald Strauss
    • 1
  • Victor A. Melezhik
    • 2
    • 3
  • Aivo Lepland
    • 2
  • Anthony E. Fallick
    • 4
  • Eero J. Hanski
    • 5
  • Michael M. Filippov
    • 6
  • Yulia E. Deines
    • 6
  • Christian J. Illing
    • 1
  • Alenka E. Črne
    • 2
  • Alex T. Brasier
    • 4
  1. 1.Institut für Geologie und PaläontologieWestfälische Wilhelms-Universität MünsterMünsterGermany
  2. 2.Geological Survey of NorwayTrondheimNorway
  3. 3.Centre for GeobiologyUniversity of BergenBergenNorway
  4. 4.Scottish Universities Environmental Research CentreGlasgowScotland, UK
  5. 5.Department of GeosciencesUniversity of OuluOuluFinland
  6. 6.Institute of Geology, Karelian Research CentreRussian Academy of SciencesPetrozavodskRussia

Personalised recommendations