7.3 The Palaeoproterozoic Perturbation of the Global Carbon Cycle: The Lomagundi-Jatuli Isotopic Event

  • Victor A. Melezhik
  • Anthony E. Fallick
  • Adam P. Martin
  • Daniel J. Condon
  • Lee R. Kump
  • Alex T. Brasier
  • Paula E. Salminen
Chapter
Part of the Frontiers in Earth Sciences book series (FRONTIERS)

Abstract

On Earth, carbon cycles through the land, ocean, atmosphere, living and dead biomass and the planet’s interior. The global carbon cycle can be divided into the tectonically driven geological cycle and the biological/physicochemical cycles. The former operates over millions of years, whereas the latter operate over much shorter time scales (days to thousands of years). Within the geological cycle, atmospheric carbon dioxide concentration is controlled by the balance between weathering, biological drawdown, size of sedimentary reservoir, subduction, metamorphism and volcanism over time periods of hundreds of millions of years.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aharon P (2005) Redox stratification and anoxia of the early Precambrian oceans: implications for carbon isotope excursions and oxidation events. Precambrian Res 137:207–222Google Scholar
  2. Amelin YV, Heaman LM, Semenov VS (1995) U-Pb geochronology of layered mafic intrusions in the eastern Baltic Shield; implications for the timing and duration of Paleoproterozoic continental rifting. Precambrian Res 75:31–46CrossRefGoogle Scholar
  3. Baker AJ, Fallick AE (1989a) Heavy carbon in two-billion-year-old marbles from Lofoten-Vesterålen, Norway: implications for the Precambrian carbon cycle. Geochim Cosmochim Acta 53:1111–1115CrossRefGoogle Scholar
  4. Baker AJ, Fallick AE (1989b) Evidence from Lewisian limestones for isotopically heavy carbon in two thousand million year old sea water. Nature 337:352–354CrossRefGoogle Scholar
  5. Barley ME, Pickard AL, Sylvester PJ (1997) Emplacement of a large igneous province as a possible cause of banded iron formation 2.45 billion years ago. Nature 385:55–58CrossRefGoogle Scholar
  6. Bau M, Romer Rolf L, Lueders V, Beukes Nicolas J (1999) Pb, O, and C isotopes in silicified Mooidraai Dolomite (Transvaal Supergroup, South Africa); implications for the composition of Paleoproterozoic seawater and “dating” the increase of oxygen in the Precambrian atmosphere. Earth Planet Sci Lett 174:43–57CrossRefGoogle Scholar
  7. Bekker A, Kaufman AJ, Karhu JA, Beukes NJ, Swart QD, Coetzee LL, Eriksson KA (2001) Chemostratigraphy of the Paleoproterozoic Duitschland Formation, South Africa: implications for coupled climate change and carbon cycling. Am J Sci 301:261–285CrossRefGoogle Scholar
  8. Bekker A, Karhu JA, Eriksson KA, Kaufman AJ (2003a) Chemostratigraphy of Paleoproterozoic carbonate successions of the Wyoming Craton: tectonic forcing of biogeochemical change? Precambrian Res 120:279–325CrossRefGoogle Scholar
  9. Bekker A, Sial AN, Karhu JA, Ferreira VP, Noce CM, Kaufman AJ, Romano AW, Pimentel MM (2003b) Chemostratigraphy of carbonates from the Minas Supergroup, Quadrilátero ferrífero (Iron Quadrangle), Brazil: a stratigraphic record of Early Proterozoic atmospheric, biogeochemical and climatic change. Am J Sci 303:865–904CrossRefGoogle Scholar
  10. Bekker A, Holmden C, Patterson W, Coetzee LL, Beukes NJ (2004) Chemostratigraphy of early Paleoproterozoic carbonates of South Africa, GSA Abstracts with Program 36: 341Google Scholar
  11. Bekker A, Karhu JA, Kaufman AJ (2006) Carbon isotope record for the onset of the Lomagundi carbon isotope excursion in the Great Lakes area, North America. Precambrian Res 148:145–180CrossRefGoogle Scholar
  12. Bekker A, Holdmen C, Beukes NJ, Kenig F, Eglinton B, Patterson WP (2008) Fractionation between inorganic and organic carbon during the Lomagundi (2.22–2.1 Ga) carbon isotope excursion. Earth Planet Sci Lett 271:278–291CrossRefGoogle Scholar
  13. Brasier AT, Fallick AE, Prave AR, Melezhik VA, Lepland A (2011) Coastal sabkha dolomites and calcitised sulphates preserving the Lomagundi-Jatuli carbon isotope signal. Precambrian Res 189:193–211CrossRefGoogle Scholar
  14. Bristow TF, Kennedy MJ (2008) Carbon isotope excursions and the oxidant budget of the Ediacaran atmosphere and ocean. Geology 36:863–866CrossRefGoogle Scholar
  15. Broecker WS (1970) A boundary condition on the evolution of atmospheric oxygen. J Geophys Res 75:3553–3557CrossRefGoogle Scholar
  16. Buchan KL, Halls HC, Mortensen JK (1996) Paleomagnetism, U-Pb geochronology, and geochemistry of Marathon Dykes, Superior Province, and comparison with the Fort Frances swarm. Can J Earth Sci 33:1583–1595CrossRefGoogle Scholar
  17. Buick IS, Uken R, Gibson RL, Walmach T (1998) High-δ13C Palaeoproterozoic carbonates from Transvaal Supergroup, South Africa. Geology 26:875–878CrossRefGoogle Scholar
  18. Clark T (1984) Géologie de la Région du lac Cambrien. Territoire du Nouveau-Québec, ET 83–02:37Google Scholar
  19. Condie KC, Des Marais DJ, Abbot D (2001) Precambrian superplumes and supercontinents: a record of black shales, carbon isotopes, and paleoclimates. Precambrian Res 106:239–260CrossRefGoogle Scholar
  20. Condie KC, O’Neill C, Aster RC (2009) Evidence and implications for a widespread magmatic shutdown for 250 My on Earth. Earth Planet Sci Lett 282:294–298CrossRefGoogle Scholar
  21. Condon DJ, Bowring SA (2011) A user’s guide to Neoproterozoic geochronology. The geological record of Neoproterozoic glaciations. In: Arnaud E, Shields G, Halverson G (eds) Geological Society, London, Memoir 36:135–149Google Scholar
  22. Corfu F, Andrews AJ (1986) A U-Pb age for mineralized Nipissing Diabase, Gowganda, Ontario. Can J Earth Sci 23:107–109CrossRefGoogle Scholar
  23. Deines P (2002) The carbon isotope geochemistry of mantle xenoliths. Earth Sci Rev 58:247–278CrossRefGoogle Scholar
  24. Des Marais DJ, Strauss H, Summons RE, Hayes JM (1992) Carbon isotope evidence for the stepwise oxidation of the Proterozoic environment. Nature 359:605–609CrossRefGoogle Scholar
  25. Dickens GR (1999) Carbon cycle – the blast in the past. Nature 401:752–753CrossRefGoogle Scholar
  26. Fallick AE, Melezhik VA, Simonson B (2008) The ancient anoxic biosphere was not as we know it. In: Dobretsov N, Kolchanov N, Rozanov A, Zavarzin G (eds) Biosphere origin and evolution. Springer, New York, pp 169–188CrossRefGoogle Scholar
  27. Fallick A, Melezhik VA, Simonson B (2011) On Proterozoic ecosystems and the carbon isotopic composition of carbonates associated with Banded Iron Formations. In: Neves L et al (eds) Modelacao de Sistemas Geologicos. Univeridade de Coimbra, Coimbra, pp 57–71Google Scholar
  28. Findlay RM, Parrish RR, Birkett TC, Watanabe DH (1995) U-Pb ages from the Nimish Formation and Montagnais glomeroporphyritic gabbro of the central New Quebec Orogen, Canada. Can J Earth Sci 32:1208–1220CrossRefGoogle Scholar
  29. Fletcher IR, Rasmussen B, McNaughton NJ (2000) SHRIMP U–Pb geochronology of authigenic xenotime and its potential for dating sedimentary basins. Aust J Earth Sci 47:845–859CrossRefGoogle Scholar
  30. Frauenstein F, Veizer J, Beukes N, Van Niekerk HS, Coetzee LL (2009) Transvaal Supergroup carbonates: implications for Paleoproterozoic δ18O and δ13C records. Precambrian Res 175:149–160CrossRefGoogle Scholar
  31. Galimov IM, Kuznetsova NG, Prokhorov VS (1968) The problem of the composition of the Earth’s ancient atmosphere in connection with results of isotopic analyses of carbon from Precambrian carbonates. Geochemistry 11:1376–1381 (in Russian)Google Scholar
  32. Gancarz AJ (1978) U-Pb age (2.05 × 109 years) of the Oklo uranium deposit. In: Proceedings of the natural fission reactors. Annual international atomic energy agency conference, Vienna, pp 513–520Google Scholar
  33. Gerlach TM (1991) Present-day carbon dioxide emissions from volcanos. Earth Space 4:5–14Google Scholar
  34. Glagolev AA, Kazansky VI, Prokhorov KV, Rusinov VL, Maslennikov VA, Voronovsky SN, Ovchinnikov LN (1987) Zonality and age of metamorphism. In: Kozlowsky YeA (ed) The superdeep well of the Kola Peninsula. Springer, Berlin, pp 166–198Google Scholar
  35. Goldich SS, Fischer LB (1986) Air-abrasion experiments in U-Pb dating of zircon. Chem Geol 58:195–215CrossRefGoogle Scholar
  36. Halilovic J, Cawood PA, Jones JA, Pirajno F, Nemchin AA (2004) Provenance of the Earaheedy Basin; implications for assembly of the Western Australian Craton. Precambrian Res 128:343–366CrossRefGoogle Scholar
  37. Hannah JL, Bekker A, Stein HJ, Markey RJ, Holland HD (2004) Primitive Os and 2316 Ma age for marine shale; implications for Paleoproterozoic glacial events and the rise of atmospheric oxygen. Earth Planet Sci Lett 225:43–52CrossRefGoogle Scholar
  38. Hanski EJ, Huhma H, Smol’kin VF, Vaasjoki M (1990) The age of ferropicritic volcanites and comagmatic Ni-bearing intrusions at Pechenga, Kola Peninsula, U.S.S.R. Geol Surv Finl Bull 62:123–133Google Scholar
  39. Hayes JM, Waldbauer JR (2006) The carbon cycle and associated redox processes through time. Philos Trans R Soc B 361:931–950CrossRefGoogle Scholar
  40. Hofmann HJ, Davidson A (1998) Paleoproterozoic stromatolites, Hurwitz Group, Quartzite Lake area, Northwest Territories, Canada. Can J Earth Sci 35:280–289CrossRefGoogle Scholar
  41. Holser WT, Schidlowski M, Mackenzie FT, Maynard JB (1988) Geochemical cycles of carbon and sulphur. In: Gregor CB, Garrels RM, Mackenzie FT, Maynard JB (eds) Chemical cycles in the evolution of the Earth. Wiley, New York, pp 106–173Google Scholar
  42. Horie K, Hidaka H, Gauthier-Lafaye F (2005) U-Pb geochronology and geochemistry of zircon from the Franceville series at Bidoudouma, Gabon, Goldschmidt conference abstract, Geochim Cosmochim Acta 69: p A11Google Scholar
  43. House CH, Schopf JW, Stetter KO (2003) Carbon isotopic fractionation by Archaeans and other thermophilic prokaryotes. Org Geochem 34:345–357CrossRefGoogle Scholar
  44. Huhma H, Cliff RA, Perttunen V, Sakko M (1990) Sm-Nd and Pb isotopic study of mafic rocks associated with early Proterozoic continental rifting: the Peräpohja schist belt in northern Finland. Contrib Mineral Petrol 104:369–379CrossRefGoogle Scholar
  45. Karhu JA (1993) Palaeoproterozoic evolution of the carbon isotope ratios of sedimentary carbonates in the Fennoscandian Shield. Geol Surv Finl Bull 371:1–87Google Scholar
  46. Karhu JA (2005) Paleoproterozoic carbon isotope excursion. In: Lehtinen M, Nurmi PA, Rämö OT (eds) Precambrian geology of Finland – key to the evolution of the Fennoscandian Shield. Elsevier, Amsterdam, pp 669–680CrossRefGoogle Scholar
  47. Karhu JA, Holland HD (1996) Carbon isotopes and the rise of atmospheric oxygen. Geology 24:867–879CrossRefGoogle Scholar
  48. Karhu J, Kortelainen NM, Huhma H, Perttunen V, Sergeev SS (2008) The end of the Paleoproterozoic carbon isotope excursion: new time constraints, Abstract, 33rd geological congress, Oslo, 6–14 Aug 2008Google Scholar
  49. Keith ML (1982) Violent volcanism, stagnant oceans and some inferences regarding petroleum, strata-bound ores and mass extinction. Geochim Cosmochim Acta 46:2621–2637CrossRefGoogle Scholar
  50. Kirschvink JL, Nash CZ, Raub TD, Raub TMD, Kopp RD, Hilburn IA (2009) The Lomagundi-Jatuli event, Lois Pasteur, and the geological record of aerobic respiration, Goldschmidt Conference Abstract, Davos, Geochim Cosmochim Acta 73: p A622Google Scholar
  51. Koistinen T, Stephens MB, Bogatchev V, Nordgulen Ø, Wenneström M, Korhonen J (Comps.) (2001) Geological map of the Fennoscandian Shield, Scale 1:2 000 000, Espoo/Trondheim/Upsala/MoscowGoogle Scholar
  52. Kortelainen N (1998) Depositional environment, carbon isotope composition and trace element geochemistry of Palaeoproterozoic carbonate rocks in the Peräpohja Belt. Master’s thesis, Department of Geology, University of Helsinki, p 97 (in Finnish)Google Scholar
  53. Krogh TE, Davis DW, Corfu F (1984) Precise U-Pb zircon and baddeleyite ages for the Sudbury area. In: Pye GE, Naldrett AJ, Giblin PE (eds) The geology and ore deposits of the Sudbury Structure, Ont Geol Surv, Spec Vol 1:431–446Google Scholar
  54. Kump LR, Junium Ch, Arthur MA, Brasier A, Fallick AE, Melezhik VA, Lepland A, Črne AE, Luo G (2011) Isotopic evidence for massive oxidation of organic matter following the great oxidation event. Science 334:1694–1696CrossRefGoogle Scholar
  55. Kuznetsov AB, Melezhik VA, Gorokhov IM, Melnikov NN, Konstantinova GV, Kutyavin EP, Turchenko TL (2010) Sr isotopic composition of Paleoproterozoic 13C-rich carbonate rocks: the Tulomozero Formation, SE Fennoscandian Shield. Precambrian Res 182:300–312CrossRefGoogle Scholar
  56. Lager I, Loberg B (1990) Sedimentological and basin analysis ore prospecting methods in the North Bothnian greenstone belt, STU-Projekt 86-03967P, Final report, Economic Geology, Luleå Technical University, Luleå, p 112 (in Swedish)Google Scholar
  57. Lindsay JF, Brasier MD (2002) Did global tectonics drive early biosphere evolution? Carbon isotope record from 2.6 to 1.9 Ga carbonates of Western Australian basins. Precambrian Res 114:1–34CrossRefGoogle Scholar
  58. Machado N, Noce CM, Ladeira Eduardo A, Belo de Oliveira O (1992) U-Pb geochronology of Archean magmatism and Proterozoic metamorphism in the Quadrilatero Ferrifero, southern Sao Francisco Craton, Brazil. Geol Soc Am Bull 104:1221–1227CrossRefGoogle Scholar
  59. Machado N, Schrank A, Noce CM, Gauthier G (1996) Ages of detrital zircon from Archean-Paleoproterozoic sequences; implications for greenstone belt setting and evolution of a Transamazonian foreland basin in Quadrilatero Ferrifero, Southeast Brazil. Earth Planet Sci Lett 141:259–276CrossRefGoogle Scholar
  60. Maheshwari A, Sial AN, Chittora VK (1999) High-δ13C Paleoproterozoic carbonates from the Aravalli Supergroup, Western India. Int Geol Rev 41:949–954CrossRefGoogle Scholar
  61. Maheshwari A, Sial AN, Gaucher C, Bossi J, Bekker A, Ferreira VP, Romano AW (2010) Global nature of the Paleoproterozoic Lomagundi carbon isotopic excursion: a review of occurrences in Brazil, India and Uruguay. Precambrian Res 182:274–299CrossRefGoogle Scholar
  62. Martin DM, Clendenin CW, Krapez B, McNaughton NJ (1998) Tectonic and geochronological constraints on late Archaean and Palaeoproterozoic stratigraphic correlation within and between the Kaapvaal and Pilbara cratons. J Geol Soc Lond 2:311–322CrossRefGoogle Scholar
  63. Martin AP, Condon DJ, Prave AR, Melezhik VA, Fallick A (2010) Constraining the termination of the Lomagundi-Jatuli positive isotope excursion in the Imandra-Varzuga segment (Kola Peninsula, Russia) of the North Transfennoscandian Greenstone Belt by high-precision ID-TIMS. AGU fall meeting, Abstracts, San Francisco, 13–17 DecGoogle Scholar
  64. Master S, Bekker A, Hofmann A (2010) A review of the stratigraphy and geological setting of the Paleoproterozoic Magondi Supergroup, Zimbabwe – type locality for the Lomagundi carbon isotope excursion. Precambrian Res 182:254–273CrossRefGoogle Scholar
  65. Mattey DP (1987) Carbon isotopes in the mantle. Terra Cognita 7:31–37Google Scholar
  66. McNaughton NJ, Wilson AF (1983) 13C-rich marbles from the Proterozoic Einasleigh Metamorphics, northern Queensland. J Geol Soc Aust 30:175–178CrossRefGoogle Scholar
  67. McNaughton NJ, Rasmussen B, Fletcher IR (1999) SHRIMP uranium-lead dating of diagenetic xenotime in siliciclastic sedimentary rocks. Science 2:78–80CrossRefGoogle Scholar
  68. Melezhik VA (1992) Early Proterozoic sedimentary and rock-forming basins of the Baltic Shield. Nauka (Science), St. Petersburg, p 258 (in Russian)Google Scholar
  69. Melezhik VA, Fallick AE (1996) A widespread positive δ13Ccarb anomaly at around 2.33–2.06 Ga on the Fennoscandian Shield: a paradox? Terra Nova 8:141–157CrossRefGoogle Scholar
  70. Melezhik VA, Fallick AE (1997) A widespread positive δ13C anomaly at around 2.33–2.06 Ga on the Fennoscandian Shield – reply. Terra Nova 9:148–151CrossRefGoogle Scholar
  71. Melezhik VA, Fallick AE (2001) Palaeoproterozoic travertines of volcanic affiliation from a 13C-rich rift lake environment. Chem Geol 173:293–312CrossRefGoogle Scholar
  72. Melezhik VA, Fallick AE (2003) δ13C and δ18O variations in primary and secondary carbonate phases: several contrasting examples from Palaeoproterozoic 13C-rich metamorphosed dolostones. Chem Geol 201:213–228CrossRefGoogle Scholar
  73. Melezhik VA, Fallick AE (2005) The Palaeoproterozoic, rift-related, shallow-water, 13C-rich, lacustrine carbonates, NW Russia – Part I: sedimentology and major element geochemistry. Trans R Soc Edinb Earth Sci 95:393–421Google Scholar
  74. Melezhik VA, Fallick AE (2010) On the Lomagundi-Jatuli carbon isotopic event: the evidence from the Kalix Greenstone Belt, Sweden. Precambrian Res 179:165–190CrossRefGoogle Scholar
  75. Melezhik VA, Predovsky AA (1982) Geochemistry of early Proterozoic lithogenesis. Nauka (Science), Leningrad, p 208 (in Russian)Google Scholar
  76. Melezhik VA, Fallick AE, Clark T (1997) Two billion year old isotopically heavy carbon: evidence from the Labrador Trough, Canada. Can J Earth Sci 34:271–285CrossRefGoogle Scholar
  77. Melezhik VA, Fallick AE, Medvedev PV, Makarikhin VV (1999a) Extreme 13Ccarb enrichment in ca. 2.0 Ga magnesite-stromatolite-dolomite-‘red beds’ association in a global context: a case for the world-wide signal enhanced by a local environment. Earth Sci Rev 48:71–120CrossRefGoogle Scholar
  78. Melezhik VA, Fallick AE, Filippov MM, Larsen O (1999b) Karelian shungite – an indication of 2000 Ma-year-old metamorphosed oil-shale and generation of petroleum: geology, lithology and geochemistry. Earth Sci Rev 47:11–40CrossRefGoogle Scholar
  79. Melezhik VA, Fallick AE, Medvedev PV, Makarikhin VV (2000) Palaeoproterozoic magnesite–stromatolite–dolostone–‘red bed’ association, Russian Karelia: palaeoenvironmental constraints on the 2.0 Ga positive carbon isotope shift. Norsk Geologisk Tidsskrift 80:163–186CrossRefGoogle Scholar
  80. Melezhik VA, Fallick AE, Medvedev PV, Makarikhin V (2001) Palaeoproterozoic magnesite: lithological and isotopic evidence for playa/sabkha environments. Sedimentology 48:379–397CrossRefGoogle Scholar
  81. Melezhik VA, Fallick AE, Smirnov YuP, Yakovlev YuN (2003) Fractionation of carbon and oxygen isotopes in 13C-rich Palaeoproterozoic dolostones in the transition from medium-grade to high-grade greenschist facies: a case study from the Kola Superdeep Drillhole. J Geol Soc Lond 160:71–82CrossRefGoogle Scholar
  82. Melezhik VA, Fallick AE, Grillo SM (2004) Subaerial exposure surfaces in a Palaeoproterozoic 13C-rich dolostone sequence from the Pechenga Greenstone Belt: palaeoenvironmental and isotopic implications for the 2330–2060 Ma global isotope excursion of 13C/12C. Precambrian Res 133:75–103CrossRefGoogle Scholar
  83. Melezhik VA, Fallick AE, Hanski E, Kump L, Lepland A, Prave A, Strauss H (2005a) Emergence of the aerobic biosphere during the Archean-Proterozoic transition: challenges for future research. Geol Soc Am Today 15:4–11Google Scholar
  84. Melezhik VA, Fallick AE, Kuznetsov AB (2005b) The Palaeoproterozoic, rift-related, shallow-water, 13C-rich, lacustrine carbonates, NW Russia – Part II: global isotope signal recorded in the lacustrine dolostones. Trans R Soc Edinb Earth Sci 95:423–444Google Scholar
  85. Melezhik VA, Fallick AE, Rychanchik DV, Kuznetsov AB (2005c) Palaeoproterozoic evaporites in Fennoscandia: implications for seawater sulphate, δ13C excursions and the rise of atmospheric oxygen. Terra Nova 17:141–148CrossRefGoogle Scholar
  86. Melezhik VA, Huhma H, Condon DJ, Fallick AE, Whitehouse MJ (2007) Temporal constraints on the Paleoproterozoic Lomagundi-Jatuli carbon isotopic event. Geology 35:655–658CrossRefGoogle Scholar
  87. Morozov AF, Hakhaev BN, Petrov OV, Gorbachev VI, Tarkhanov GB, Tsvetkov LD, Erinchek YuM, Akhmedov AM, Krupenik VA, Sveshnikova KYu (2010) Rock-salts in Palaeoproterozoic strata of the Onega depression of Karelia (based on data from the Onega parametric drillhole). Trans Acad Sci 435(2):230–233 (in Russian)Google Scholar
  88. Mortensen JK, Percival JA (1987) Reconnaissance U-Pb zircon and monazite geochronology of the Lac Clairambault area, Ashuanipi Complex, Quebec. Geol Surv Can Pap 87–2:135–142Google Scholar
  89. Müeller SG, Krapez B, Barley ME, Fletcher IR (2005) Giant iron-ore deposits of the Hamersley Province related to the breakup of Paleoproterozoic Australia; new insights from in situ SHRIMP dating of baddeleyite from mafic intrusions. Geology 33:577–580CrossRefGoogle Scholar
  90. Öhlander B, Lager I, Loberg BEH, Schoberg H (1992) Stratigraphical position and Pb-Pb age of lower Proterozoic carbonate rocks from the Kalix greenstone belt, northern Sweden. Geologiska Föreningen i Stockholm Förhandlingar 114:317–322CrossRefGoogle Scholar
  91. Papineau D, Mojzsis SJ, Coath CD, Karhu JA, McKeegan KD (2005) Multiple sulphur isotopes of sulfides from sediments in the aftermath of Paleoproterozoic glaciations. Geochim Cosmochim Acta 69:5033–5060CrossRefGoogle Scholar
  92. Pekkarinen L, Lukkarinen H (1991) Paleoproterozoic volcanism in the Kiihtelysvaara-Tohmajärvi district, eastern Finland. Geol Surv Finl Bull 357:1–30Google Scholar
  93. Perttunen V, Vaasjoki M (2001) U-Pb geochronology of the Peräpohja Schist Belt, northwestern Finland. Geol Surv Finl Spec Pap 33:45–84Google Scholar
  94. Petrov VP, Voloshina ZM (1982) Metamorphism. In: Gorbunov GI (ed) The Imandra/Varzuga zone of the Karelides. Nauka (Science), Leningrad, pp 192–212 (in Russian)Google Scholar
  95. Petrov VP, Voloshina ZM (1995) Regional metamorphism of the Pechenga area rocks. In: Mitrofanov FP, Smolkin VF (eds) Magmatism, sedimentogenesis and gedodynamics of the Pechenga Palaeorift. Kola Science Centre, Apatity, pp 164–182 (in Russian)Google Scholar
  96. Pickard AL (2002) SHRIMP U-Pb zircon ages of tuffaceous mudrocks in the Brockman iron formation of the Hamersley range, Western Australia. Aust J Earth Sci 49:491–507CrossRefGoogle Scholar
  97. Pickard AL (2003) U-Pb SHRIMP U-Pb zircon ages for the Palaeoproterozoic Kuruman iron formation, Northern Cape Province, South Africa; evidence for simultaneous BIF deposition on Kaapvaal and Pilbara cratons. Precambrian Res 125:275–315CrossRefGoogle Scholar
  98. Pokrovsky B, Melezhik VA (1995) Variations of carbon and oxygen isotope composition in Palaeoproterozoic carbonate rocks of the Kola Peninsula. Stratigr Geol Correl 3:45–53Google Scholar
  99. Puchtel LS, Arndt NT, Hofmann AW, Haase KM, Kroener A, Kulikov VS, Kulikova VV, Garbe-Schoenberg CD, Nemchin AA (1998) Petrology of mafic lavas within the Onega Plateau, central Karelia; evidence for 2.0 Ga plume-related continental crustal growth in the Baltic Shield. Contrib Mineral Petrol 130:134–153CrossRefGoogle Scholar
  100. Purohit R, Sanyal P, Roy AB, Bhattacharya SK (2010) 13C enrichment in the Palaeoproterozoic carbonate rocks of the Aravalli Supergroup, northwest India: influence of depositional environment. Gondwana Res 18:538–546CrossRefGoogle Scholar
  101. Rasmussen B, Fletcher IR (2002) Indirect dating of mafic intrusions by SHRIMP U-Pb analysis of monazite in contact metamorphosed shale; an example from the Palaeoproterozoic Capricorn Orogen, Western Australia. Earth Planet Sci Lett 197:287–299CrossRefGoogle Scholar
  102. Rohon ML, Vialette Y, Clark T, Roger G, Ohnenstetter D, Vidal P (1993) Aphebian mafic-ultramafic magmatism in the Labrador Trough (New Quebec); its age and the nature of its mantle source. Can J Earth Sci 30:1582–1593Google Scholar
  103. Rothman DH, Hayes JM, Summons RE (2003) Dynamics of the Neoproterozoic carbon cycle. Proc Natl Acad Sci 100:8124–8129CrossRefGoogle Scholar
  104. Salop LI (1982) Geological evolution of the Earth in the Precambrian. Nedra, Leningrad, p 343 (in Russian)Google Scholar
  105. Schidlowski M (1988) A 3,800-million-year isotopic record of life from carbon in sedimentary rocks. Nature 333:313–318CrossRefGoogle Scholar
  106. Schidlowski M, Eichmann R, Junge CE (1975) Precambrian sedimentary carbonates: carbon and oxygen isotope geochemistry and implications for the terrestrial oxygen budget. Precambrian Res 2:1–69CrossRefGoogle Scholar
  107. Schidlowski M, Eichmann R, Junge CE (1976) Carbon isotope geochemistry of the Precambrian Lomagundi carbonate province, Rhodesia. Geochim Cosmochim Acta 40:449–455CrossRefGoogle Scholar
  108. Schidlowski M, Hayes JM, Kaplan IR (1983) Isotopic inference of ancient biochemistries: carbon, sulphur, hydrogen and nitrogen. In: Schopf JW (ed) Earth’s earliest biosphere: its origin and evolution. University Press, Princeton, pp 149–186Google Scholar
  109. Scoates JS, Friedman RM (2008) Precise age of the platiniferous Merensky Reef, Bushveld Complex, South Africa, by the U-Pb zircon chemical abrasion U-Pb ID-TIMS technique. Econ Geol Bull Soc Econ Geologists 103:465–471CrossRefGoogle Scholar
  110. Shields G (1997) A widespread positive δ13C anomaly at around 2.33–2.06 Ga on the Fennoscandian Shield – Comment. Terra Nova 9:148CrossRefGoogle Scholar
  111. Silvennoinen A (1991) Pre-Quaternary rocks of the Kuusamo and Rukatunturi map-sheet areas. Explanation to the maps of Pre-quaternary rocks, sheets 4524 + 4542. Geological map of Finland 1:100,000, Geological Survey of Finland, Espoo, p 63 (in Finnish with English summary)Google Scholar
  112. Skiöld T (1987) Aspects of the Proterozoic geochronology of northern Sweden. Precambrian Res 35:161–167CrossRefGoogle Scholar
  113. Strauss H, Des Marais DJ, Hayes JM, Summons RE (1992) Concentrations of organic carbon and maturities and elemental composition of kerogen. In: Schopf WJ, Klein C (eds) The Proterozoic biosphere: a multidisciplinary study. Cambridge University Press, New York, pp 95–99Google Scholar
  114. Summons RE, Hayes JM (1992) Principles of molecular and isotopic biogeochemistry. In: Schopf JW, Klein C (eds) The Proterozoic biosphere. Cambridge University Press, Cambridge, pp 83–93Google Scholar
  115. Sundquist ET (1993) The global carbon dioxide budget. Science 259:934–941Google Scholar
  116. Tikhomirova M, Makarikhin VV (1993) Possible reasons for the δ13C anomaly of lower Proterozoic sedimentary carbonates. Terra Res 5:244–248CrossRefGoogle Scholar
  117. Trendall AF, de Laeter JR, Nelson DR, Hassler SW (1998) Precise zircon U-Pb ages from the Marra Mamba Iron formation and Wittenoom formation, Hamersley Group, Western Australia. Aust J Earth Sci 45:137–142CrossRefGoogle Scholar
  118. Vallini D, Rasmussen B, Krapež B, Fletcher IR, McNaughton NJ (2002) Obtaining diagenetic ages from metamorphosed sedimentary rocks: U-Pb dating of unusually coarse xenotime cement in phosphatic sandstone. Geology 30:1083–1086CrossRefGoogle Scholar
  119. Vallini DA, Cannon WF, Schulz KJ (2006) Age constraints for Paleoproterozoic glaciation in the Lake Superior region; detrital zircon and hydrothermal xenotime ages for the Chocolay Group, Marquette Range Supergroup. Can J Earth Sci 43:571–591CrossRefGoogle Scholar
  120. Vasiĺeva IM, Ovchinnikova GB, Melezhik VA, Gorokhov IM, Kusnetsov AB, Gorokhovsky BM (2000) Pb-Pb isotopic age of the Tulomozero dolostones, N. Lake Onega area, All-Russian conference. General issues of Precambrian subdivision, Abstract Volume, Kola Science Centre, Apatity, pp 53–54Google Scholar
  121. Volodichev OI (1987) Metamorphism. In: Sokolov VA (ed) Geology of Karelia. Nauka (Science), Leningrad, pp 152–175 (in Russian)Google Scholar
  122. Wanke A, Melezhik VA (2005) Palaeoproterozoic sedimentation and stromatolite growth in an advanced intracontinental rift associated with the marine realm: a record of the Neoarchaean continent breakup? Precambrian Res 140:1–35CrossRefGoogle Scholar
  123. Watson RS, Trewin NH, Fallick AE (1995) The formation of carbonate cement in the Forth and Balmoral Fields, northern North Sea: a case for biodegradation, carbonate cementation and oil leakage during early burial. In: Harley AJ, Prosser DJ (eds) Characterization of deep marine clastic systems, vol 94, Geological Society Special Publication, pp 177–200Google Scholar
  124. Wilson MR, Sehlstedt S, Claesson L, Smellie JAT, Aftalion M, Hamilton PJ, Fallick AE (1987) Jörn: an early Proterozoic intrusive complex in a volcanic-arc environment, north Sweden. Precambrian Res 36:201–225CrossRefGoogle Scholar
  125. Wilson JP, Fischer WW, Johnston DT, Knoll AH, Grotzinger JP, Walter MR, McNaughton NJ, Simon M, Abelson J, Schrag DP, Summons R, Allwood A, Andres M, Gammon C, Garvin J, Rashby S, Schweizer M, Watters WA (2010) Geobiology of the late Paleoproterozoic Duck Creek formation, Western Australia. Precambrian Res 179:135–149CrossRefGoogle Scholar
  126. Yudovich YE, Makarikhin VV, Medvedev PV, Sukhanov NV (1991) Carbon isotope anomalies in carbonates of the Karelian Complex. Geochem Int 28:56–62Google Scholar
  127. Zagnitko VN, Lugovaja IP (1989) Isotope geochemistry of carbonate and ferrous-siliceous rocks of the Ukraine Shield, Naukova Dumka, Kiev, p 316 (in Russian)Google Scholar
  128. Zlobin VL (1993) Geology of carbonate-gneiss complex of the Anabar Shield. Ph.D. thesis, Institute of the Lithosphere, Russian Academy of Sciences, Moscow, p 26 (in Russian)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Victor A. Melezhik
    • 1
    • 2
  • Anthony E. Fallick
    • 3
  • Adam P. Martin
    • 4
  • Daniel J. Condon
    • 4
  • Lee R. Kump
    • 5
  • Alex T. Brasier
    • 3
  • Paula E. Salminen
    • 6
  1. 1.Geological Survey of NorwayTrondheimNorway
  2. 2.Centre for GeobiologyUniversity of BergenBergenNorway
  3. 3.Scottish Universities Environmental Research CentreGlasgowScotland, UK
  4. 4.NERC Isotope Geosciences Laboratory (NIGL)NottinghamUK
  5. 5.Department of GeosciencesPennsylvanian State UniversityUniversity ParkUSA
  6. 6.Department of Geosciences and GeographyUniversity of HelsinkiHelsinkiFinland

Personalised recommendations