8.1 The Great Oxidation Event

  • Lee R. Kump
  • Anthony E. Fallick
  • Victor A. Melezhik
  • Harald Strauss
  • Aivo Lepland
Part of the Frontiers in Earth Sciences book series (FRONTIERS)


The Fennoscandian Arctic Russia-Drilling Early Earth Project (FAR-DEEP) was designed to capture the sequence of environmental upheavals associated with the establishment of an aerobic biosphere in the Palaeoproterozoic as represented in several palaeobasins and greenstone belts in the Fennoscandian Shield; the Pechenga Greenstone Belt is one of them (Fig. 8.1). From weathering and deposition on Archaean basement overlain by evidence for “Huronian Glaciation,” through early evidence for atmospheric oxygen in the form of redbeds and highly oxidised lavas which themselves are coincident with evidence for massive perturbations of the global carbon cycle expressed through substantial shifts in δ13C, and ending with the deposition of high organic C rocks and strong evidence for modern-style early diagenetic environments with abundant sulphate reduction and diagenetic concretions, the FAR-DEEP cores preserve an invaluable archive of the “Great Oxidation Event” or GOE (Holland 2002, 2006) and related environmental consequences. This transition, known for decades to roughly coincide with the Archaean – Proterozoic boundary, is marked not only by the appearance of “red beds,” reddish sedimentary rocks, typically sand and silt particles coated in ferric oxides that were deposited in terrestrial environments, but also with the retention of Fe in ancient soil profiles or palaeosols and the end of uranium ore accumulation in detrital rocks as uranium-bearing conglomerates (reviews by Knoll and Holland 1995; Canfield 2005; Holland 2006). Other changes, especially the abrupt cessation (but episodic recurrence) of banded iron formation and an increase in the Fe(III)/Fe(II) ratio in shales (Bekker et al. 2003), reflect on the oxidation state of the oceans and diagenetic environments, not the atmosphere per se, and thus require additional consideration before they can be used as a proxy for atmospheric oxygen. As discussed below, the discovery of mass-independent fractionation of the sulphur isotopes exclusively in Archaean sedimentary rocks (Farquhar et al. 2000) provided the direct proxy for atmospheric oxygenation during the transition from the Archaean to the Proterozoic.


Band Iron Formation Oxygenic Photosynthesis Fennoscandian Shield Diagenetic Carbonate Transvaal Supergroup 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amelin YuV, Heaman LM, Semenov VS (1995) U-Pb geochronology of layered mafic intrusions in the eastern Baltic Shield: implications for the timing and duration of Palaeoproterozoic continental rifting. Precambrian Res 75:31–46CrossRefGoogle Scholar
  2. Anbar AD, Duan Y, Lyons TW, Arnold GL, Kendall B, Creaser RA, Kaufman AJ, Gordon GW, Scott C, Garvin J, Buick R (2007) A whiff of oxygen before the great oxidation event? Science 317:1903–1906CrossRefGoogle Scholar
  3. Baker AJ, Fallick AE (1989) Evidence from Lewisian limestones for isotopically heavy carbon in two thousand million year old sea water. Nature 337:352–354CrossRefGoogle Scholar
  4. Bao H, Rumble D, Lowe DR (2007) The five stable isotope compositions of Fig Tree barites: implications on sulfur cycle in ca. 3.2 Ga oceans. Geochim Cosmochim Acta 71:4868–4879CrossRefGoogle Scholar
  5. Bau M, Romer R, Luders V, Beukes NJ (1999) Pb, O, and C isotopes in silicified Mooidraai dolomite (Transvaal Supergroup, South Africa): implications for the composition of Palaeoproterozoic seawater and ‘dating’ the increase of oxygen in the Precambrian atmosphere. Earth Planet Sci Lett 174:43–57CrossRefGoogle Scholar
  6. Bekker A, Kaufman AJ, Karhu JA, Beukes NJ, Swart QD, Coetzee LL, Eriksson KA (2001) Chemostratigraphy of the Paleoproterozoic Duitschland Formation, South Africa: implications for coupled climate change and carbon cycling. Am J Sci 301:261–285CrossRefGoogle Scholar
  7. Bekker A, Holland HD, Young GM, Nesbitt HW (2003) Fe2O3/FeO ratio in average shale through time: a reflection of the stepwise oxidation of the atmosphere. Abstr Program Annu Meeting Geol Soc Am 34:83Google Scholar
  8. Bekker A, Holland HD, Wang P-L, Rumble D, Stein HJ, Hannah JL, Coetzee LL, Beukes NJ (2004) Dating the rise of the atmospheric oxygen. Nature 427: 117–120CrossRefGoogle Scholar
  9. Berner RA (1980) Early diagenesis, a theoretical approach. Princeton University Press, New Jersey, p 256Google Scholar
  10. Brocks JJ, Logan GA, Buick R, Summons R (1999) Archaean molecular fossils and the early rise of eukaryotes. Science 285:1033–1036CrossRefGoogle Scholar
  11. Brocks JJ, Buick R, Summons RE, Logan GA (2003) A reconstruction of Archaean biological diversity based on molecular fossils from the 2.78 to 2.45 billion-year-old Mount Bruce Supergroup, Hamersley Basin, Western Australia. Geochim Cosmochim Acta 67:4321–4335CrossRefGoogle Scholar
  12. Buick R, Dunlop JSR (1990) Evaporitic sediments of early Archaean age from the Warrawoona Group, North Pole, Western Australia. Sedimentology 37:247–277CrossRefGoogle Scholar
  13. Cameron EM (1982) Sulphate and sulphate reduction in early Precambrian oceans. Nature 296:145–148CrossRefGoogle Scholar
  14. Canfield DE (1998) A new model for Proterozoic ocean chemistry. Nature 396:450–453CrossRefGoogle Scholar
  15. Canfield DE (2005) The early history of atmospheric oxygen: homage to Robert M. Garrels. Annu Rev Earth Planet Sci 33:1–36CrossRefGoogle Scholar
  16. Canfield DC, Steward FJ, Thamdrup B, de Brabandere L, Dalsgaard T, DeLong EF, Revsbech NP, Uloa O (2010) A cryptic sulfur cycle in oxygen-minimum-zone waters off the Chilean coast. Science 330:1375–1378CrossRefGoogle Scholar
  17. Canil D (1999) Vanadium partitioning between orthopyroxene, spinel and silicate melt and the redox states of mantle source regions for primary magmas. Geochim Cosmochim Acta 63:557–572CrossRefGoogle Scholar
  18. Catling DC, Zahnle KJ, McKay CP (2001) Biogenic methane, hydrogen escape, and the irreversible oxidation of early Earth. Science 293:839–843CrossRefGoogle Scholar
  19. Claire MW, Catling DC, Zahnle KJ (2006) Biogeochemical modelling of the rise in atmospheric oxygen. Geobiology 4:239–269CrossRefGoogle Scholar
  20. Cornell DH, Schutte SS, Eglington BL (1996) The Ongeluk basaltic andesite formation in Griqualand West, South Africa: submarine alteration in a 2222 Ma Proterozoic sea. Precambrian Res 79:101–123CrossRefGoogle Scholar
  21. Delano JW (2001) Redox history of the Earth’s interior: implications for the origin of life. Orig Life Evol Biosph 31:311–341CrossRefGoogle Scholar
  22. Dobson DP, Brodholt JP (2005) Subducted banded iron formations as a source of ultralow-velocity zones at the core-mantle boundary. Nature 434:371–374CrossRefGoogle Scholar
  23. Dutkiewicz A, Volk H, George SC, Ridley J, Buick R (2006) Biomarkers from Huronian oil-bearing fluid inclusions: an uncontaminated record of life before the Great Oxidation Event. Geology 34:437–440CrossRefGoogle Scholar
  24. Eigenbrode JL, Freeman KH, Summons RE (2008) Methylhopane biomarker hydrocarbons in Hamersley Province sediments provide evidence for NeoArchaean aerobiosis. Earth Planet Sci Lett 273:323–331CrossRefGoogle Scholar
  25. Fallick AE, Melezhik VA, Simonson BM (2008) The ancient anoxic biosphere was not as we know it. In: Dobretsov N, Kolchanov N, Rozanov A, Zavarzin G (eds) Biosphere origin and evolution. Springer, New York, pp 169–188CrossRefGoogle Scholar
  26. Fallick A, Melezhik V, Simonson B (2011) On Proterozoic ecosystems and the carbon isotopic composition of carbonates associated with Banded Iron Formations. In: Neves L et al (eds) Modelação de Sistemas Geológicos. Univeridade de Coimbra, Portugal, pp 57–71Google Scholar
  27. Farquhar J, Bao H, Thiemens M (2000) Atmospheric influence of Earth’s earliest sulphur cycle. Science 289:756–758CrossRefGoogle Scholar
  28. Frei R, Gaucher C, Poulton SW, Canfield DE (2009) Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes. Nature 461:250–254CrossRefGoogle Scholar
  29. Gauthier-Lafaye F, Weber F (2003) Natural nuclear fission reactors: time constraints for occurrence and their relation to uranium and manganese deposits and to the evolution of the atmosphere. Precambrian Res 120:81–101CrossRefGoogle Scholar
  30. Goldblatt C, Lenton TM, Watson AJ (2006) Bistability of atmospheric oxygen and the great oxidation. Nature 443:683–686CrossRefGoogle Scholar
  31. Grassineau NV, Abell P, Appel PWU, Lowry D, Nisbet EG (2006) Early life signatures in sulfur and carbon isotopes, from Isua, Barberton, Wabigoon (Steep Rock), and Belingwe greenstone belts. Geol Soc Am Mem 198:33–52Google Scholar
  32. Guo Q, Strauss H, Kaufman AJ, Schröder S, Gutzmer J, Wing B, Baker MA, Bekker A, Jin Q, Kim S-T, Farquhar J (2009) Reconstructing Earth’s surface oxidation across the Archaean-Proterozoic transition. Geology 37:299–402CrossRefGoogle Scholar
  33. Habicht KS, Gade M, Thamdrup B, Berg P, Canfield DE (2002) Calibration of sulfate levels in the Archean ocean. Science 298: 2372–2374CrossRefGoogle Scholar
  34. Halevy I, Johnston DT, Schrag DP (2010) Explaining the structure of the Archaean mass-independent sulphur isotope record. Science 329:204–207CrossRefGoogle Scholar
  35. Hannah JL, Stein HJ, Zimmerman A, Yang G, Markey RJ, Melezhik VA (2006) Precise 2004 ± 9 Ma Re‐Os age for Pechenga black shale: comparison of sulfides and organic material. Geochim Cosmochim Acta 70:A228Google Scholar
  36. Hanski EJ (1992) Petrology of the Pechenga ferropicrites and cogenetic, Ni-bearing gabbro-wehrlite intrusions, Kola Peninsula, Russia. Geol Surv Finland Bull 367:1–192Google Scholar
  37. Hayes JM, Waldbauer JR (2006) The carbon cycle and associated redox processes through time. Philos Trans R Soc B 361:931–950CrossRefGoogle Scholar
  38. Hedges SB, Kumar S (2009) The timetree of life. United Kingdom, Oxford, p 551Google Scholar
  39. Hedges SB, Chen H, Kumar S, Wang DY-C, Thompson AS, Watanabe H (2001) A genomic timescale for the origin of eukaryotes. BMC Evol Biol 1:4CrossRefGoogle Scholar
  40. Heinrichs TK, Reimer TO (1977) A sedimentary barite deposit from the Archean Fig Tree Group of the Barberton Mountain Land (South Africa). Econ Geol 72: 1426–1441CrossRefGoogle Scholar
  41. Hickman AH (1973) The North Pole barite deposits, Pilbara Goldfield. Ann Rept Geol Surv W Aust 1972:57–60Google Scholar
  42. Holland HD (1978) The chemistry of the atmosphere and oceans. Wiley, New York, p 351Google Scholar
  43. Holland HD (2002) Volcanic gases, black smokers, and the great oxidation event. Geochim Cosmochim Acta 66:3811–3826CrossRefGoogle Scholar
  44. Holland HD (2006) The oxygenation of the atmosphere and oceans. Philos Trans R Soc B 361:903–915CrossRefGoogle Scholar
  45. Huston DL, Logan GA (2004) Barite, BIFs and bugs: evidence for the evolution of the Earth’s early hydrosphere. Earth Planet Sci Lett 220:41–55CrossRefGoogle Scholar
  46. Karhu JA (1993) Palaeoproterozoic evolution of the carbon isotope ratios of sedimentary carbonates in the Fennoscandian Shield. Geol Surv Finland Bull 371:1–87Google Scholar
  47. Karhu JA, Holland HD (1996) Carbon isotopes and rise of atmospheric oxygen. Geology 24:867–879CrossRefGoogle Scholar
  48. Kasting JF, Holland HD, Kump LR (1992) Atmospheric evolution: the rise of oxygen. In: Schopf JW, Klein C (eds) The Proterozoic biosphere: a multidisciplinary study. Cambridge University Press, Cambridge, pp 159–165Google Scholar
  49. Kasting JF, Eggler DH, Raeburn SP (1993) Mantle redox evolution and the case for a reduced Archaean atmosphere. J Geol 101:245–257CrossRefGoogle Scholar
  50. Kaufman AJ, Johnston DT, Farquhar J, Masterson AL, Lyons TW, Bates S, Anbar AD, Arnold GL, Garvin J, Buick R (2007) Late Archaean biospheric oxygenation and atmospheric evolution. Science 317:1900–1903CrossRefGoogle Scholar
  51. Kirschvink JL, Kopp RE (2008) Palaeoproterozoic ice houses and the evolution of oxygen-mediating enzymes: the case for a late origin of photosystem II. Philos Trans R Soc B 363:2755–2765CrossRefGoogle Scholar
  52. Knoll AH, Holland HD (1995) Oxygen and Proterozoic evolution: an update. In: Board on Earth Sciences and Resources (ed) Effects of past global change on life. National Research Council, Washington, DC, pp 21–33Google Scholar
  53. Konhauser KO, Lalonde SV, Planavsky NJ, Pecoits E, Lyons TW, Mojzsis SJ, Rouxel OJ, Barley ME, Rosìere C, Fralick PW, Kump LR, Bekker A (2011) Aerobic bacterial pyrite oxidation and acid rock drainage during the great oxidation event. Nature 478:369–373CrossRefGoogle Scholar
  54. Kopp RE, Kirschvink JL, Hilburn IA, Nash CZ (2005) The Paleoproterozoic snowball Earth: a climate disaster triggered by the evolution of oxygenic photosynthesis. Proc Natl Acad Sci USA 102:11131–11136CrossRefGoogle Scholar
  55. Krupenik VA, Akhmedov AM, Sveshnikova KYu (2011) Structure of the section of the Onega structure based on the Onega parametric drillhole. In: Glushanin LV, Sharov NV, Shchiptsov VV (eds) The Onega Palaeoproterozoic structure (Geology, tectonics, deep structure and minerageny). Institute of Geology, Karelian Research Centre of RAS, Petrozavodsk, pp 172–189 (in Russian)Google Scholar
  56. Kump LR, Barley ME (2007) Continental tectonics, increased subaerial volcanism and the rise of atmospheric oxygen. Nature 448:1033–1036CrossRefGoogle Scholar
  57. Kump LR, Kasting JF, Barley ME (2001) Rise of atmospheric oxygen and the “upside-down” Archaean mantle. Geochem Geophys Geosyst 2: Paper number 2000GC000114Google Scholar
  58. Lambert IB, Donnelly TH, Dunlop JSR, Groves DI (1978) Stable isotopic compositions of early Archaean sulphate deposits of probable evaporitic and volcanogenic origins. Nature 276:808–810CrossRefGoogle Scholar
  59. Lesher CM (1999) Regional stratigraphic, structural, and metamorphic setting of the East-Central Cape Smith Belt. In: Lesher CM (ed) Komatiitic Peridotite-Hosted Ni-Cu-(PGE) Deposits of the Raglan Area, Cape Smith belt, New QuÕbec, vol 2, Guide Series. Mineral Exploration Research Centre/Laurentian University, Sudbury, pp 17–34Google Scholar
  60. Li ZXA, Lee CTA (2004) The constancy of upper mantle fO2 through time inferred from the V/Sc ratios in basalts. Earth Planet Sci Lett 228:483–493CrossRefGoogle Scholar
  61. Melezhik VA, Fallick AE (1996) A widespread positive δ13Ccarb anomaly at around 2.33-2.06 Ga on the Fennoscandian shield: a paradox? Terra Nova 8:141–157CrossRefGoogle Scholar
  62. Melezhik VA, Fallick AE, Medvedev PV, Makarikhin VV (1999) Extreme 13Ccarb enrichment in ca. 2.0 Ga magnesite-stromatolite-dolomite-‘red beds’ association in a global context: a case for the world-wide signal enhanced by a local environment. Earth Sci Rev 48:71–120CrossRefGoogle Scholar
  63. Melezhik VA, Fallick AE, Hanski EJ, Kump LR, Lepland A, Prave AR, Strauss H (2005) Emergence of the aerobic biosphere during the Archaean-Proterozoic transition: challenges of future research. GSA Today 15:4–11CrossRefGoogle Scholar
  64. Melezhik VA, Huhma H, Condon DJ, Fallick AE, Whitehouse MJ (2007) Temporal constraints on the Paleoproterozoic Lomagundi-Jatuli carbon isotopic event. Geology 35:655–658CrossRefGoogle Scholar
  65. Morozov AF, Hahaev BN, Petrov OV, Gorbachev VI, Tarkhanov GB, Tsvetkov LD, Erinchek YuM, Akhmedov AM, Krupenik VA, Sveshnikova KYu (2010) Rock-salts in Palaeoproterozoic strata of the Onega depression of Karelia (based on data from the Onega parametric drillhole). Commun Russ Acad Sci 435:230–233 (in Russian)Google Scholar
  66. Müller SG, Krapez B, Barley ME, Fletcher IR (2005) Giant iron-ore deposits of the Hamersley province related to the breakup of Paleoproterozoic Australia: new insights from in situ SHRIMP dating of baddeleyite from mafic intrusions. Geology 33:577–580CrossRefGoogle Scholar
  67. Ohmoto H, Watanabe Y, Ikemi H, Poulson SR, Taylor BE (2006) Sulphur isotope evidence for an oxic Archaean atmosphere. Nature 442:908–911CrossRefGoogle Scholar
  68. Papineau D, Mojzsis SJ, Schmitt AK (2007) Multiple sulphur isotopes from Paleoproterozoic Huronian interglacial sediments and the rise of atmospheric oxygen. Earth Planet Sci Lett 255:188–212CrossRefGoogle Scholar
  69. Pavlov AA, Kasting JF (2002) Mass-independent fractionation of sulfur isotopes in Archaean sediments: strong evidence for an anoxic Archaean atmosphere. Astrobiology 2:27–41CrossRefGoogle Scholar
  70. Philippot P, van Zuilen M, Lepot K, Thomazo C, Farquhar J, van Kranendonk MJ (2007) Early Archaean mircroorganisms preferred elemental sulfur, not sulfate. Science 317:1534–1537CrossRefGoogle Scholar
  71. Rashby SE, Sessions AL, Summons RE, Newman DK (2007) Biosynthesis of 2-methylbacteriohopanepolyols by an anoxygenic phototroph. Proc Natl Acad Sci USA 104:15099–15104CrossRefGoogle Scholar
  72. Rasmussen B, Fletcher IR, Brocks JJ, Kilburn MR (2008) Reassessing the first appearance of eukaryotes and cyanobacteria. Nature 455:1101–1104CrossRefGoogle Scholar
  73. Reimer TO (1980) Archean sedimentary barite deposits of the Swaziland supergroup barites and the evolution of the atmosphereGoogle Scholar
  74. Reinhard CT, Raiswell R, Scott C, Anbar AD, Lyons TW (2009) A late Archaean sulfidic sea stimulated by early oxidative weathering of the continents. Science 326:713–716CrossRefGoogle Scholar
  75. Reuschel M, Melezhik VA, Whitehouse MJ, Lepland A, Fallick AE, Strauss H (2012) Isotopic evidence for a sizeable seawater sulfate reservoir at 2.1 Ga. Precambrian Geol 192–195:78–88CrossRefGoogle Scholar
  76. Scheffer M, Carpenter SR (2003) Catastrophic regime shifts in ecosystems: linking theory to observation. Trends Ecol Evol 18:648–656CrossRefGoogle Scholar
  77. Shen Y, Farquhar J, Masterson A, Kaufman AJ, Buick R (2009) Evaluating the role of microbial sulfate reduction in the early Archaean using quadruple isotope systematics. Earth Planet Sci Lett 279:383–391CrossRefGoogle Scholar
  78. Tsikos H, Matthews A, Erel Y, Moore JM (2010) Iron isotopes constrain biogeochemical redox cycling of iron and manganese in a Palaeoproterozoic stratified basin. Earth Planet Sci Lett 298:125–134CrossRefGoogle Scholar
  79. Ueno Y, Ono S, Rumble D, Maruyamas S (2008) Quadruple sulfur isotope analysis of c. 3.5 Ga Dresser Formation: new evidence for microbial sulfate reduction in the early Archaean. Geochim Cosmochim Acta 72:5675–5691CrossRefGoogle Scholar
  80. Van Kranendonk MJ, Philippot P, Lepot K, Bodorkos S, Pirajno F (2008) Geological setting of Earth’s oldest fossils in the ca. 3.5 Ga Dresser Formation, Pilbara Craton, Western Australia. Precambrian Res 167:93–124CrossRefGoogle Scholar
  81. Waldbauer JR, Sherman LS, Sumner DY, Summons RE (2009) Late Archean molecular fossils from the Transvaal Supergroup record the antiquity of microbial diversity and aerobiosis. Precambrian Res 169:28–47CrossRefGoogle Scholar
  82. Welander PA, Coleman ML, Sessions AL, Summons RE, Newman DK (2010) Identification of a methylase required for 2-methylhopanoid production and implications for the interpretation of sedimentary hopanes. Proc Natl Acad Sci 107:8537–8542CrossRefGoogle Scholar
  83. Wille M, Kramers JD, Nagler TF, Beukes NJ, Schroder S, Meisel Th, Lacassie JP, Voegelin AR (2007) Evidence for a gradual rise of oxygen between 2.6 and 2.5 Ga from Mo isotopes and Re-PGE signatures in shales. Geochim Comsochim Acta 71:2417–2435CrossRefGoogle Scholar
  84. Zahnle K, Claire M, Catling D (2006) The loss of mass-independent fractionation in sulphur due to a Paleoproterozoic collapse of atmospheric methane. Geobiology 4:271–283CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Lee R. Kump
    • 1
  • Anthony E. Fallick
    • 2
  • Victor A. Melezhik
    • 3
    • 4
  • Harald Strauss
    • 5
  • Aivo Lepland
    • 3
  1. 1.Department of GeosciencesPennsylvanian State UniversityUniversity ParkUSA
  2. 2.Scottish Universities Environmental Research CentreGlasgowScotland, UK
  3. 3.Geological Survey of NorwayTrondheimNorway
  4. 4.Centre for GeobiologyUniversity of BergenBergenNorway
  5. 5.Institut für Geologie und PaläontologieWestfälische Wilhelms-UniversitätMünsterGermany

Personalised recommendations