7.10 Chemical Characteristics of Sediments and Seawater

  • Lee R. Kump
  • Anton B. Kuznetsov
  • Igor M. Gorokhov
  • Victor A. Melezhik
  • Juraj Farkaš
  • Ramananda Chakrabarti
  • Stein B. Jacobsen
  • Christopher T. Reinhard
  • Timothy W. Lyons
  • Olivier Rouxel
  • Dan Asael
  • Nicolas Dauphas
  • Mark van Zuilen
  • Ronny Schoenberg
  • François L. H. Tissot
  • Judith L. Hannah
  • Holly J. Stein
Chapter
Part of the Frontiers in Earth Sciences book series (FRONTIERS)

Abstract

The transition from an anoxic to oxygenated atmosphere was arguably the most dramatic change in the history of the Earth. This “Great Oxidation Event” (Holland 2006) transformed the biogeochemical cycles of the elements by imposing an oxidative step in the cycles, creating strong redox gradients in the terrestrial and marine realms that energised microbial metabolism. Although much past research was focused on establishing when the rise of atmospheric oxygen took place, recognition that substantial mass-independent fraction (MIF) of the sulphur isotopes is restricted to the time interval before 2.45 Ga and requires an anoxic atmosphere (Farquhar et al. 2000, 2007; Mojzsis et al. 2003; Ono et al. 2003; Bekker et al. 2004) argues the atmosphere became permanently oxygenated at this time (Pavlov and Kasting 2002). A false-start to the modern aerobic biosphere and a “whiff” of atmospheric oxygen (Anbar et al. 2007) may have occurred in the latest Archaean, as reflected in a transient enrichment in the redox-sensitive element molybdenum in marine shales and a reduction in the extent of MIF precisely coincident with the peak in Mo and FeS2 enrichment (Kaufman et al. 2007). Geochemical proxies are imperfect, and an earlier (c. 3 Ga) appearance of atmospheric oxygen is possible (Ohmoto et al. 2006) but disputed (Farquhar et al. 2007; Buick 2008).

Keywords

Black Shale Chem Geol Iron Isotope Great Oxidation Event Iron Isotope Fractionation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Babinski M, Chemale F Jr, Van Schmus WR (1995) The Pb/Pb age of the Minas Supergroup carbonate rocks, Quadrilátero Ferrífero, Brazil. Precambrian Res 72:235–245Google Scholar
  2. Banner JL, Hanson GN (1990) Calculation of simultaneous isotopic and trace element variations during water-rock interaction with applications of carbonate diagenesis. Geochim Cosmochim Acta 54:3123–3137Google Scholar
  3. Bekker A, Kaufman AJ, Karhu JA, Beukes NJ, Swart QD, Coetzee LL, Eriksson KA (2001) Chemostratigraphy of the Paleoproterozoic Duitschland Formation, South Africa: implication for coupled climate and carbon cycling. Am J Sci 301:261–285Google Scholar
  4. Bekker A, Karhu JA, Eriksson KA, Kaufman AJ (2003a) Chemostratigraphy of the Paleoproterozoic carbonate successions of the Wyoming Craton: tectonic forcing of biogeochemical change? Precambrian Res 120:279–325Google Scholar
  5. Bekker A, Sial AN, Karhu JA (2003b) Chemostratigraphy of carbonates from Minas Supergroup, Quadrilatero Ferrifero (Iron Quadrangle), Brazil: a stratigraphic record of Early Proterozoic atmospheric, biogeochemical and climatic change. Am J Sci 330:865–904Google Scholar
  6. Bekker A, Karhu JA, Kaufman AJ (2006) Carbon isotope record for onset of the Lomagundi carbon isotope excursion in Great Lakes area, North America. Precambrian Res 148:145–180Google Scholar
  7. Bowring SA, Grotzinger JP (1992) Implications of new chronostratigraphy for tectonic evolution of Wopmay orogen, northwest Canadien Shield. Am J Sci 292:1–20Google Scholar
  8. Brass GW (1976) The variation of the marine 87Sr/86Sr ratio during Phanerozoic time: interpretation using a flux model. Geochim Cosmochim Acta 40:721–730Google Scholar
  9. Cameron EM (1983) Evidence from early Proterozoic anhydrite for sulphur isotope partitioning in Precambrian ocean. Nature 304:54–56Google Scholar
  10. Deb M, Hoefs J, Baumann A (1991) Isotopic composition of two Precambrian stratiform barite deposits from the Indian shield. Geochim Cosmochim Acta 55:303–308Google Scholar
  11. Denison RE, Koepnick RB, Burke WH, Hetherington EA, Fletcher A (1997) Construction of the Silurian and Devonian seawater 87Sr/86Sr curve. Chem Geol 140:109–121Google Scholar
  12. Denison RE, Koepnick RB, Burke WH, Hetherington EA (1998) Construction of the Cambrian and Ordovician seawater 87Sr/86Sr curve. Chem Geol 152:325–340Google Scholar
  13. Derry LA, Kaufman AJ, Jacobsen SB (1992) Sedimentary cycling and environmental change in the Late Proterozoic: evidence from stable and radiogenic isotopes. Geochim Cosmochim Acta 56:1317–1329Google Scholar
  14. Faure G (1986) Principles of isotope geology, 2nd edn. Willey, New York, p 589Google Scholar
  15. Faure G, Hurley PM, Powell JK (1965) The isotopic composition of strontium in surface water from the north Atlantic Ocean. Geochim Cosmochim Acta 29:209–220Google Scholar
  16. Fietzke J, Liebetrau V, Gunter D, Gurs K, Hametner K, Zumholz K, Hansteen TH, Eisenhauer A (2008) An alternative data acquisition and evaluation strategy for improved isotope ratio precision using LA-MC-ICP-MS applied to stable and radiogenic strontium isotopes in carbonates. J Anal Atom Spectrom 23:955–961Google Scholar
  17. Frauenstein F, Veizer J, Beukes N, van Niekerk HS, Coetzee LL (2009) Transvaal Supergroup carbonates: implications for Paleoproterozoic δ18O and δ13C records. Precambrian Res 175:149–160Google Scholar
  18. Goldberg ED (1963) The oceans as a chemical system. In: Hill MN (ed) The sea, vol 2. Wiley, New York, pp 3–25Google Scholar
  19. Goldstein SJ, Jacobsen SB (1987) The Nd and Sr isotopic systematics of river water-dissolved material: implications for the sources of Nd and Sr in seawater. Chem Geol (Isot Geosci Sect) 66:245–272Google Scholar
  20. Gorokhov IM, Semikhatov MA, Baskakov AV, Kutyavin EP, Mel’nikov NN, Sochava AV, Turchenko TL (1995) Sr isotopic composition in Riphean, Vendian, and Lower Cambrian carbonates from Siberia. Stratigr Geol Correl 3:1–28Google Scholar
  21. Gorokhov IM, Kuznetsov AB, Melezhik VA, Konstantinova GV, Melnikov NN (1998) Sr isotopic composition in the Upper Jatulian (Early Paleoproterozoic) dolomites of the Tulomozero Formation, southeastern Karelia. Dokl Earth Sci 360:609–612Google Scholar
  22. Halicz L, Segal I, Fruchter N, Stein M, Lazar B (2008) Strontium stable isotopes fractionate in the soil environments? Earth Planet Sci Lett 272:406–411Google Scholar
  23. Halverson GP, Dudas FO, Maloof AS, Bowring SA (2007) Evolution of 87Sr/86Sr composition of Neoproterozoic seawater. Palaeogeogr Palaeocl Palaeoecol 256:103–129Google Scholar
  24. Hodell DA, Mueller PA, McKenzie JA, Mead GA (1989) Strontium isotope stratigraphy and geochemistry of the late Neogene ocean. Earth Planet Sci Lett 92:165–178Google Scholar
  25. Kamber BS, Webb G (2001) The geochemistry of late Archean microbial carbonate: implications for ocean chemistry and continental erosion history. Geochim Cosmochim Acta 65:2509–2525Google Scholar
  26. Kaufman AJ, Jacobsen SB, Knoll AH (1993) The Vendian record of Sr and C isotopic variations in seawater: implications for tectonics and paleoclimate. Earth Planet Sci Lett 120:409–430Google Scholar
  27. Koepnick RB, Burke WH, Denison RE, Hetherington EA, Nelson HF, Otto JB, Waite LE (1985) Construction of the seawater 87Sr/86Sr curve for the Cenozoic and Cretaceous: supporting data. Chem Geol (Isot Geosci Sect) 58:55–81Google Scholar
  28. Krabbenhoft A, Eisenhauer A, Bohm F, Vollstaedt H, Fietzke J, Liebetrau V, Augustin N, Peucker-Ehrenbrink B, Muller MN, Horn C, Hansen BT, Notle N, Wallmann K (2010) Constraining the marine strontium budget with natural isotope fractionations (87Sr/86Sr*, δ88/86Sr) of carbonates, hydrothermal solutions and river waters. Geochim Cosmochim Acta 74:1097–4109Google Scholar
  29. Kuznetsov AB, Melezhik VA, Gorokhov IM, Melnikov NN, Fallick AE (2003) Sr isotope composition in Paleoproterozoic carbonates extremely enriched in 13C: Kaniapiskau Supergroup, the Labrador trough of the Canadian shield. Stratigr Geol Correl 11:209–219Google Scholar
  30. Kuznetsov AB, Ovchinnikova GV, Semikhatov MA, Gorokhov IM, Kaurova OK, Krupenin MT, Vasil’eva IM, Gorokhovskii BM, Maslov AV (2008) The Sr isotopic characterization and Pb–Pb age of carbonate rocks from the Satka formation, the Lower Riphean Burzyan Group of the southern Urals. Stratigr Geol Correl 16:120–137Google Scholar
  31. Kuznetsov AB, Melezhik VA, Gorokhov IM, Melnikov NN, Konstantinova GV, Kutyavin EP, Turchenko TL (2010) Sr isotopic composition of Paleoproterozoic 13C-rich carbonate rocks: the Tulomozero Formation, SE Fennoscandian Shield. Precambrian Res 182:300–312Google Scholar
  32. McArthur JM, Howarth RJ, Bailey TR (2001) Strontium isotope stratigraphy: LOWESS. Version 3. Best-fit line to the marine Sr-isotope curve for 0 to 509 Ma and accompanying look-up table for deriving numerical age. J Geol 109:155–170Google Scholar
  33. Melezhik VA (2006) Multiple causes of Earth’s earliest global glaciation. Terra Nova 18:130–137Google Scholar
  34. Melezhik VA, Fallick AE, Kuznetsov AB (2005a) Palaeoproterozoic, rift-related, 13C-rich, lacustrine carbonates, NW Russia. Part II: Global isotopic signal recorded in the lacustrine dolostone. Trans Roy Soc Edinb Earth Sci 95:423–444Google Scholar
  35. Melezhik VA, Fallick AE, Rychanchik DV, Kuznetsov AB (2005b) Palaeoproterozoic evaporites in Fennoscandia: implications for seawater sulphate, δ13C excursions and the rise of atmospheric oxygen. Terra Nova 17:141–148Google Scholar
  36. Melezhik VA, Huhma H, Condon DJ, Fallick AE, Whitehouse MJ (2007) Temporal constraints on the Paleoproterozoic Lomagundi-Jatuli carbon isotopic event. Geology 35:655–658Google Scholar
  37. Mirota MD, Veizer J (1994) Geochemistry of Precambrian carbonates: VI. Aphebian Albanel Formations, Quebec, Canada. Geochim Cosmochim Acta 58:1735–1745Google Scholar
  38. Nier AO (1938) The isotopic constitution of strontium, barium, bismuth, thallium and mercury. Phys Rev 5:275–279Google Scholar
  39. Paytan A, Kastner M, Martin EE, Macdougall JD, Herbert T (1993) Marine barite as a monitor of seawater strontium isotope composition. Nature 366:445–449Google Scholar
  40. Peterman ZL, Hedge CE, Tourtelot HA (1970) Isotopic composition of strontium in sea water throughout Phanerozoic time. Geochim Cosmochim Acta 34:105–120Google Scholar
  41. Ohno T, Komiya T, Ueno Yu, Hirata T, Maruyama S (2008) Determination of 88Sr/86Sr mass-dependent isotopic fractionation and radiogenic isotope variation of 87Sr/86Sr in the Neoproterozoic Doushantuo Formation. Gondwana Res 14:126–133Google Scholar
  42. Ovchinnikova GV, Kuznetsov AB, Melezhik VA, Gorokhov IM, Vasil’eva IM, Gorokhovskii BM (2007) Pb-Pb age of Jatulian carbonate rocks: the Tulomozero Formation of southeast Karelia. Stratigr Geol Correl 15:359–372Google Scholar
  43. Ray JS, Veizer J, Davis WJ (2003) C, O, Sr and Pb isotope systematics of carbonate sequences of the Vindhyan Supergroup, India: age, diagenesis, correlations and implications for global events. Precambrian Res 121:103–140Google Scholar
  44. Rohon M-L, Vialette Y, Clark T, Roger G, Ohnenstetter D, Vidal Ph (1993) Aphebian mafic-ultramafic magmatism in the Labrador trough (New Quebec): its age and the nature of its mantle source. Can J Earth Sci 30:1582–1593Google Scholar
  45. Rueggeberg A, Fietzke J, Liebetrau V, Eisenhauer A, Dullo WC, Freiwald A (2008) Stable strontium isotope (δ88/86Sr) in cold-water corals – a new proxy for reconstruction of intermediate ocean water temperatures. Earth Planet Sci Lett 269:569–574Google Scholar
  46. Schneiderhan EA, Gutzmer J, Strauss H, Mezger K, Beukes NJ (2006) The chemostratigraphy of a Paleoproterozoic MnF- and BIF succession – the Voelwater Subgroup of the Transvaal Supergroup in Griqualand West, South Africa. S Afr J Geol 109:63–80Google Scholar
  47. Semikhatov MA, Kuznetsov AB, Gorokhov IM, Konstantinova GV, Melnikov NN, Podkovyrov VN, Kutyavin EP (2002) Low 87Sr/86Sr ratios in seawater of the Grenville and post-Grenville time. Determining factors. Stratigr Geol Correl 10:1–41Google Scholar
  48. Shields GA (2007) A normalized seawater strontium isotope curve: possible implications for Neoproterozoic-Cambrian weathering rates and further oxygenation of the Earth. eEarth 2:35–42Google Scholar
  49. Spooner ETC (1976) The strontium isotopic composition of seawater, and seawater-oceanic crust interaction. Earth Planet Sci Lett 31:167–174Google Scholar
  50. Sumner DY, Bowring SA (1996) U-Pb geochronologic constraints on deposition of the Campbellrand Subgroup, Transvaal Supergroup, South Africa. Precambrian Res 79:25–35Google Scholar
  51. Tremba EL, Faure G, Katiskatos GC, Sumerson CH (1975) Strontium-isotopic composition in the Thetys Sea, Euboea, Greece. Chem Geol 16:109–120Google Scholar
  52. Veizer J, Compston W (1974) 87Sr/86Sr composition of seawater during the Phanerozoic. Geochim Cosmochim Acta 38:1461–1484Google Scholar
  53. Veizer J, Compston W (1976) 87Sr/86Sr in Precambrian carbonates as an index of crustal evolution. Geochim Cosmochim Acta 40:905–914Google Scholar
  54. Veizer J, Hoefs J, Lowe DR, Thurston PC (1989) Geochemistry of Precambrian carbonates: II. Archean greenstone belts and Archean seawater. Geochim Cosmochim Acta 53:859–871Google Scholar
  55. Veizer J, Clayton RN, Hinton RW (1992a) Geochemistry of Precambrian carbonates: IV. Early Paleoproterozoic (2.25 ± 0.25) seawater. Geochim Cosmochim Acta 56:875–885Google Scholar
  56. Veizer J, Plumb KA, Clayton RN, Hinton RW, Grotzinger JP (1992b) Geochemistry of Precambrian carbonates: V. Late Paleoproterozoic seawater. Geochim Cosmochim Acta 56:2487–2501Google Scholar
  57. Veizer J, Ala D, Azmy K, Bruckschen P, Buhl D, Bruhn F, Carden G, Diener A, Ebneth S, Godderis Y, Jasper T, Korte C, Pawellek F, Podlaha O, Strauss H (1999) 87Sr/86Sr, 18O and 13C evolution of Phanerozoic seawater. Chem Geol 161:59–88Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Lee R. Kump
    • 1
  • Anton B. Kuznetsov
    • 2
  • Igor M. Gorokhov
    • 2
  • Victor A. Melezhik
    • 3
    • 4
  • Juraj Farkaš
    • 5
    • 6
  • Ramananda Chakrabarti
    • 7
    • 8
  • Stein B. Jacobsen
    • 7
  • Christopher T. Reinhard
    • 9
  • Timothy W. Lyons
    • 9
  • Olivier Rouxel
    • 10
  • Dan Asael
    • 11
  • Nicolas Dauphas
    • 12
  • Mark van Zuilen
    • 13
  • Ronny Schoenberg
    • 14
  • François L. H. Tissot
    • 12
  • Judith L. Hannah
    • 15
    • 16
  • Holly J. Stein
    • 15
    • 16
  1. 1.Department of GeosciencesPennsylvanian State UniversityUniversity ParkUSA
  2. 2.Institute of Precambrian Geology and GeochronologyRussian Academy of SciencesSt. PetersburgRussia
  3. 3.Geological Survey of NorwayTrondheimNorway
  4. 4.Centre for GeobiologyUniversity of BergenBergenNorway
  5. 5.Department of GeochemistryCzech Geological SurveyPragueCzech Republic
  6. 6.Faculty of Environmental SciencesCzech University of Life SciencesSuchdolCzech Republic
  7. 7.Department of Earth and Planetary SciencesHarvard UniversityCambridgeUSA
  8. 8.Indian Institute of ScienceCenter for Earth SciencesBangaloreIndia
  9. 9.Department of Earth SciencesUniversity of CaliforniaRiversideUSA
  10. 10.IFREMER, Department of Ressources physiques et Ecosystèmes de fond deMerTechnopôle Brest-IroisePlouzanéFrance
  11. 11.Institut Universitaire Européen de la MerUMR 6538, Technopôle Brest-IroisePlouzanéFrance
  12. 12.Origins Lab, Department of the Geophysical Sciences and Enrico Fermi InstituteThe University of ChicagoChicagoUSA
  13. 13.Institut de Physique du Globe de ParisEquipe Géobiosphère Actuelleet Primitivecedex 5 ParisFrance
  14. 14.Department for GeosciencesUniversity of TuebingenTuebingenGermany
  15. 15.Geological Survey of NorwayTrondheimNorway
  16. 16.AIRIE Program, Department of GeosciencesColorado State UniversityFort CollinsUSA

Personalised recommendations