Advertisement

7.1 The End of Mass-Independent Fractionation of Sulphur Isotopes

  • M. Reuschel
  • H. Strauss
  • A. Lepland
Chapter
Part of the Frontiers in Earth Sciences book series (FRONTIERS)

Abstract

The Archaean-Proterozoic transition is marked by a number of fundamental upheavals in respect to geological, tectonic, geochemical, biological and climatic aspects. Of these, the most significant change appears to be a substantial increase in atmospheric oxygen concentration initiating the irreversible oxygenation of our planet. It has been proposed that a major oxygenation event occurred during the early Palaeoproterozoic some 2.3 Ga ago, widely termed the “Great Oxidation Event” (“GOE”, Holland 1999, 2006). Evidence for this generally accepted view (but see Ohmoto 1999; Ohmoto et al. 2006, for a different view) stems from geological, mineralogical and geochemical data. Of these, the study of multiple sulphur isotopes, i.e. the analysis of all four stable isotopes of sulphur (32S, 33S, 34S and 36S) developed recently into the central approach for reconstructing the chemical composition of Earth’s early atmosphere, and secular variations thereof. Specifically, it has been suggested that mass-independently fractionated sulphur isotopes, archived in sediments of Archaean and early Paleoproterozoic age, provide a reliable tool for reconstructing past atmospheric oxygen concentrations (Farquhar et al. 2000; Pavlov and Kasting 2002; Ueno et al. 2009).

Keywords

Sulphur Isotopic Composition Bacterial Sulphate Reduction Seawater Sulphate Sedimentary Sulphide Sulphur Isotope Fractionation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bao H, Rumble D, Lowe DR (2007) The five stable isotope compositions of Fig Tree barites: implications on sulfur cycle in 3.2 Ga oceans. Geochim Cosmochim Acta 71:4868–4879CrossRefGoogle Scholar
  2. Bekker A, Kaufman AJ, Karhu JA, Beukes NJ, Swart QD, Coetzee LL, Eriksson KA (2001) Chemostratigraphy of the Paleoproterozoic Duitschland Formation, South Africa: implications for coupled climate change and carbon cycling. Am J Sci 301:261–285CrossRefGoogle Scholar
  3. Bekker A, Holland HD, Wang PL, Rumble D, Stein HJ, Hannah JL, Coetzee LL, Beukes NJ (2004) Dating the rise of atmospheric oxygen. Nature 427:117–120CrossRefGoogle Scholar
  4. Bluth GJ, Schnetzler CC, Krueger AJ, Walter LS (1993) The contribution of explosive volcanism to global atmospheric sulphur dioxide concentrations. Nature 366:327–329CrossRefGoogle Scholar
  5. Canfield DE (2001) Biogeochemistry of sulphur isotopes. In: Valley JW, Cole DR (eds) Stable isotope geochemistry, vol 43, Reviews in mineralogy and geochemistry. Geological Society of America, Washington, DC, pp 607–633Google Scholar
  6. Canfield DE (2004) The evolution of the Earth surface sulphur reservoir. Am J Sci 304:839–861CrossRefGoogle Scholar
  7. Cates N, Mojszis SJ (2006) Chemical and isotopic evidence for widespread Eoarchean metasedimentary enclaves in southern West Greenland. Geochim Cosmochim Acta 70:4229–4257CrossRefGoogle Scholar
  8. Clayton RN, Onuma N, Grossman L, Mayeda TK (1977) Distribution of pre-solar component in Allende and other carbonaceous chondrites. Earth Planet Sci Lett 34:209–224CrossRefGoogle Scholar
  9. Corfu F, Andrews AJ (1986) U–Pb age for mineralized Nipissing diabase, Gowganda, Ontario. Can J Earth Sci 23:107–109CrossRefGoogle Scholar
  10. Crowell JC (1999) Pre-Mesozoic ice ages; their bearing on understanding the climate system. Mem Geol Soc Am 192:1–106Google Scholar
  11. Domagal-Goldman SD, Kasting JF, Johnston DT, Farquhar J (2008) Organic haze, glaciations and multiple sulphur isotopes in the Mid-Archean Era. Earth Planet Sci Lett 269:29–40CrossRefGoogle Scholar
  12. Farquhar J, Wing BA (2003) Multiple sulphur isotopes and the evolution of the atmosphere. Earth Planet Sci Lett 213:1–13CrossRefGoogle Scholar
  13. Farquhar J, Bao H, Thiemens M (2000) Atmospheric influence of Earth’s earliest sulphur cycle. Science 289:756–758CrossRefGoogle Scholar
  14. Farquhar J, Savarino J, Airieau S, Thiemens MH (2001) Observation of wavelength sensitive mass-independent sulphur isotope effects during SO2 photolysis: implications for the early atmosphere. J Geophys Res 106:1–11CrossRefGoogle Scholar
  15. Farquhar J, Wing BA, McKeegan D, Harris JW, Cartigny P, Thiemens MH (2002) Mass-independent sulfur of inclusions in diamond and sulfur recycling on early Earth. Science 298:2369–2372CrossRefGoogle Scholar
  16. Farquhar J, Peters M, Johnston DT, Strauss H, Masterson A, Wiechert U, Kaufman AJ (2007) Isotopic evidence for Mesoarchaean anoxia and changing atmospheric sulphur chemistry. Nature 449:706–710CrossRefGoogle Scholar
  17. Frauenstein F, Veizer J, Beukes N, Van Niekerk HS, Coetzee LL (2009) Transvaal supergroup carbonates: implications for Paleoproterozoic δ18O and δ13C records. Precambrian Res 175:149–160CrossRefGoogle Scholar
  18. Grassineau NV, Nisbet EG, Bickle MJ, Fowler CMR, Lowry D, Mattey DP, Abell P, Martin A (2001) Antiquity of the biological sulphur cycle: evidence from sulphur and carbon isotopes in 2700 million year old rocks of the Belingwe belt, Zimbabwe. Proc Roy Soc Lond B268:113–119CrossRefGoogle Scholar
  19. Guo Q, Strauss H, Kaufman AJ, Schröder S, Gutzmer J, Wing B, Baker MA, Bekker A, Jin Q, Kim S-T, Farquhar J (2009) Reconstructing Earth’s surface oxidation across the Archean-Proterozoic transition. Geology 37:399–402CrossRefGoogle Scholar
  20. Hoefs J (2009) Stable isotope geochemistry. Springer, Heidelberg, p 285Google Scholar
  21. Holland HD (1999) When did the Earth’s atmosphere become oxic? A reply. Geochem News 100:20–22Google Scholar
  22. Holland HD (2006) The oxygenation of the atmosphere and oceans. Philos Trans Roy Soc Lond B361:903–915Google Scholar
  23. Hou KJ, Li YH, Wan DF (2007) Constraints on the Archean atmospheric oxygen and sulfur cycle from mass-independent sulfur records from Anshan-Benxi BIFs, Liaonig Province, China. Sci China Ser D Earth Sci 50:1471–1478CrossRefGoogle Scholar
  24. Hu G, Rumble D, Wang PL (2003) An ultraviolet laser microprobe for the in situ analysis of multisulfur isotopes and its use in measuring the Archean sulfur isotope mass-independent anomalies. Geochim Cosmochim Acta 67:3101–3117CrossRefGoogle Scholar
  25. Hulston JR, Thode HG (1965) Variations in the 33S, 34S, 36S contents of meteorites and their relation to chemical and nuclear effects. J Geophys Res 70:3475–3484CrossRefGoogle Scholar
  26. Jamiesson JW, Wing BA, Hanington MD, Farquhar J (2006) Evaluating isotopic equilibrium among sulfide mineral pairs in Archean ore deposits: case study from the Kidd Creek VMS deposit, Ontario, Canada. Econ Geol 101:1055–1061CrossRefGoogle Scholar
  27. Johnston DT, Wing BA, Farquhar J, Kaufman AJ, Strauss H, Lyons TW, Kah LC, Canfield DE (2005) Active microbial sulphur disproportionation in the Mesoproterozoic. Science 310:1477–1479CrossRefGoogle Scholar
  28. Johnston DT, Poulton SW, Farquhar J, Wing BA, Fralick PW, Canfield DE (2006) Evolution of the oceanic sulfur cycle in the late Paleoproterozoic. Geochim Cosmochim Acta 70:5723–5739CrossRefGoogle Scholar
  29. Johnston DT, Farquhar J, Summons R, Shen Y, Kaufman AJ, Masterson AL, Canfield DE (2008) Sulfur isotope biogeochemistry of the Proterozoic McArthur basin. Geochim Cosmochim Acta 72:4278CrossRefGoogle Scholar
  30. Kah LC, Lyons TW, Frank TD (2004) Low marine sulphate and protracted oxygenation of the Proterozoic biosphere. Nature 431:834–838CrossRefGoogle Scholar
  31. Kamber BS, Whitehouse MJ (2007) Micro scale sulphur isotope evidence for sulphur cycling in the late Archean shallow ocean. Geobiology 5:5–17CrossRefGoogle Scholar
  32. Kasting JF, Zahnle KJ, Pinto JP, Young AT (1989) Sulfur ultraviolet radiation, and the early evolution of life. Orig Life 19:95–108CrossRefGoogle Scholar
  33. Kaufman AJ, Johnston DT, Farquhar J, Masterson AL, Lyons TW, Bates S, Anbar AD, Arnold GL, Buick R (2007) Late Archean biospheric oxygenation and atmospheric evolution. Science 317:1900–1903CrossRefGoogle Scholar
  34. Krogh TE, Davis DW, Corfu F (1984) Precise U–Pb zircon and baddeleyite ages for the Sudbury area. In: Pye EG, Naldrett AJ, Gilblin PE (eds) The geology and ore deposits of the Sudbury structure, Ontario Geological Survey, Sudbury. Geol Surv Spec Pap 1:431–446Google Scholar
  35. Lyons TW, Gill BC (2010) Ancient sulfur cycling and oxygenation of the early biosphere. Elements 6:93–99CrossRefGoogle Scholar
  36. Lyons TW, Kah LC, Gellatly AM (2004) The Precambrian sulphur isotope record of evolving atmospheric oxygen. In: Eriksson PG et al (eds) The Precambrian earth: tempos and events, developments in Precambrian geology. Elsevier, Amsterdam, pp 421–440Google Scholar
  37. Mojzsis SJ, Coath CD, Greenwood JP, McKeegan KD, Harrison TM (2003) Mass-independent isotope effects in Archean (2.5 to 3.8 Ga) sedimentary sulphides determined by ion microprobe analysis. Geochim Cosmochim Acta 67:1635–1658CrossRefGoogle Scholar
  38. Ohmoto H (1999) When did the Earth’s atmosphere become oxic? Geochem News 93:12–27Google Scholar
  39. Ohmoto H, Watanabe Y, Ikemi H, Poulson SR, Taylor BE (2006) Sulphur isotope evidence for an oxic Archaean atmosphere. Nature 442:908–911CrossRefGoogle Scholar
  40. Ono S, Eigenbrode JL, Pavlov AA, Kharecha P, Rumble D, Kasting JF, Freeman KH (2003) New insights into Archean sulphur cycle from mass-independent sulphur isotope records from the Hamersley Basin, Australia. Earth Planet Sci Lett 213:15–30CrossRefGoogle Scholar
  41. Ono S, Boswell W, Johnston DT, Farquhar J, Rumble D (2006) Mass-dependent fractionation of quadruple stable sulfur isotope system as a new tracer for sulfur biogeochemical cycles. Geochim Cosmochim Acta 70:2238–2252CrossRefGoogle Scholar
  42. Ono S, Shanks WC, Rouxel OJ, Rumble D (2007) 33S constraints on the seawater sulfate contribution in modern seafloor hydrothermal vent sulfides. Geochim Cosmochim Acta 71:1170–1182CrossRefGoogle Scholar
  43. Ono S, Kaufman AJ, Farquhar J, Sumner DY, Beukes NJ (2009a) Lithofacies control on multiple-sulphur isotope records and Neoarchean sulphur cycles. Precambrian Res 169:58–67CrossRefGoogle Scholar
  44. Ono S, Beukes NJ, Rumble D (2009b) Origin of two distinct multiple-sulphur isotope compositions of pyrite in the 2.5 Ga Klein Naute Formation, Griqualand West Basin, South Africa. Precambrian Res 169:48–57CrossRefGoogle Scholar
  45. Papineau D, Mojzsis SJ (2006) Mass-independent fractionation of sulfur isotopes in sulfides from the pre-3770 Ma Isua Supercrustal Belt, West Greenland. Geobiology 4:227–238CrossRefGoogle Scholar
  46. Papineau D, Mojzsis SJ, Coath CD, Karhu JA, McKeegan KD (2005) Multiple sulphur isotopes of sulfides from sediments in the aftermath of Paleoproterozoic glaciations. Geochim Cosmochim Acta 69:5033–5060CrossRefGoogle Scholar
  47. Papineau D, Mojzsis SJ, Schmitt AK (2007) Multiple sulphur isotopes from Paleoproterozoic Huronian interglacial sediments and the rise of atmospheric oxygen. Earth Planet Sci Lett 255:188–212CrossRefGoogle Scholar
  48. Partridge MA, Golding SD, Baublys KA, Young E (2008) Pyrite paragenesis and multiple sulfur isotope distribution in late Archean and early Paleoproterozoic Hamersley Basin sediments. Earth Planet Sci Lett 272:44–49CrossRefGoogle Scholar
  49. Pavlov A, Kasting J (2002) Mass-independent fractionation of sulphur isotopes in Archean sediments: strong evidence for an anoxic Archean atmosphere. Astrobiology 2:27–41CrossRefGoogle Scholar
  50. Philippot P, van Zuilen M, Lepot K, Thomazo C, Farquhar J, van Kranendonk M (2007) Early Archean microorganisms preferred elemental sulfur not sulfate. Science 317:1534–1537CrossRefGoogle Scholar
  51. Schröder S, Bekker A, Beukes NJ, Strauss H, van Niekerk HS (2008) Rise in seawater sulphate concentration associated with Paleoproterozoic positive carbon excursion: evidence from sulphate evaporites in the 2.2–2.1 Gyr shallow marine Lucknow Formation, South Africa. Terra Nova 20:108–117CrossRefGoogle Scholar
  52. Shen YN, Farquhar J, Masterson A, Kaufman AJ, Buick R (2009) Evaluating the role of microbial sulfate reduction in the early Archean using quadruple isotope systematics. Earth Planet Sci Lett 279:383–391CrossRefGoogle Scholar
  53. Strauss H (2002) The isotopic composition of Precambrian sulphides – seawater chemistry and biological evolution. Spec Publ Int Assoc Sediment 33:67–105Google Scholar
  54. Strauss H (2004) 4 Ga of seawater evolution: evidence from the sulphur isotopic composition of sulphate. In: Amend JP, Edwards KJ, Lyons TW (eds) Sulphur biogeochemistry-past and present. Geological Society of America, Boulder, pp 195–205CrossRefGoogle Scholar
  55. Thiemens MH, Heidenreich JE (1983) The mass-independent fractionation of oxygen; a novel isotope effect and its possible cosmochemical implications. Science 219:1073–1075CrossRefGoogle Scholar
  56. Thomazo C, Ader M, Farquhar J, Philippot P (2009) Methanotrophs regulated atmospheric sulfur isotope anomalies during the Mesoarchean (Tumbiana Formation, Western Australia). Earth Planet Sci Lett 279:65–75CrossRefGoogle Scholar
  57. Ueno Y, Johnson MS, Danielache SO, Eskebjerg C, Pandey A, Yoshida N (2009) Geological sulphur isotopes indicate elevated OCS in the Archean atmosphere, solving the faint young sun paradox. Proc Natl Acad Sci 106:14784–14789CrossRefGoogle Scholar
  58. Whitehouse MJ, Kamber BS, Fedo CM, Lepland A (2005) Integrated Pb- and S-isotope investigation of sulphide minerals from the early Archean of southwest Greenland. Chem Geol 222:112–131CrossRefGoogle Scholar
  59. Young GM (1988) Proterozoic plate-tectonics, glaciation and iron formations. Sediment Geol 58:127–144CrossRefGoogle Scholar
  60. Zahnle K, Claire M, Catling D (2006) The loss of mass-independent fractionation in sulphur due to a Paleoproterozoic collapse of atmospheric methane. Geobiology 4:271–283CrossRefGoogle Scholar
  61. Zerkle AL, Farquhar J, Johnston DT, Raymond CP, Canfield DE (2009) Fractionation of multiple sulfur isotopes during phototrophic oxidation of sulfide and elemental sulfur by a green sulfur bacterium. Geochim Cosmochim Acta 73:291–306CrossRefGoogle Scholar
  62. Zerkle AL, Kamyshny A Jr, Kump LR, Farqhuar J, Oduro H, Arthur MA (2010) Sulfur cycling in a stratified euxinic lake with moderately high sulfate: constraints from quadruple S isotopes. Geochim Cosmochim Acta 74:4953–4970CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institut für Geologie und PaläontologieWestfälische Wilhelms-Universität MünsterMünsterGermany
  2. 2.Geological Survey of NorwayTrondheimNorway

Personalised recommendations