Scheduling of Vehicles in Transportation Networks

  • Dariusz Kowalski
  • Zeev Nutov
  • Michael Segal
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7266)

Abstract

In this paper we consider online vehicle scheduling problems for different network topologies under various objective functions: minimizing the maximum completion time, minimizing the largest delay, and minimizing the sum of completion times and present a number of provable approximate solutions.

Keywords

Completion Time Directed Acyclic Graph Transportation Network Linear Network Schedule Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adler, M., Khanna, S., Rajaraman, R., Rosen, A.: Time-constrained scheduling of weighted packets on trees and meshes. Algorithmica 36, 123–152 (2003)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Adler, M., Rosenberg, A.L., Sitaraman, R.K., Unger, W.: Scheduling time-constrained communication in linear networks. In: Proc. 10th ACM Symp. on Parallel Algorithms and Architectures, pp. 269–278 (1998)Google Scholar
  3. 3.
    Bermond, J.-C., Nisse, N., Reyes, P., Rivano, H.: Minimum Delay Data Gathering in Radio Networks. In: Ruiz, P.M., Garcia-Luna-Aceves, J.J. (eds.) ADHOC-NOW 2009. LNCS, vol. 5793, pp. 69–82. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Bonifaci, V., Klasing, R., Korteweg, P., Stougie, L., Marchetti-Spaccamela, A.: Data Gathering in Wireless Networks. In: Graphs and Algorithms in Communication Networks. Springer, Heidelberg (2009)Google Scholar
  5. 5.
    Bonifaci, V., Korteweg, P., Marchetti-Spaccamela, A., Stougie, L.: An approximation algorithm for the wireless gathering problem. Oper. Res. Lett. 36(5), 605–608 (2008)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Busch, C., Magdon-Ismail, M., Mavronicolas, M., Wattenhofer, R.: Near-Optimal Hot-Potato Routing on Trees. In: Danelutto, M., Vanneschi, M., Laforenza, D. (eds.) Euro-Par 2004. LNCS, vol. 3149, pp. 820–827. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Cidon, I., Kutten, S., Mansour, Y., Peleg, D.: Greedy Packet Scheduling. SIAM J. Comput. 24(1), 148–157 (1995)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Dey, T.K.: Improved Bounds for Planar k-Sets and Related Problems. Discrete & Computational Geometry 19(3), 373–382 (1998)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Fleischer, R., Ge, Q., Li, J., Zhu, H.: Efficient Algorithms for k-Disjoint Paths Problems on DAGs. In: Kao, M.-Y., Li, X.-Y. (eds.) AAIM 2007. LNCS, vol. 4508, pp. 134–143. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Fortune, S., Hopcroft, J.E., Wyllie, J.: The directed subgraph homeomorphism problem. Theoret. Comput. Sci. 10, 111–121 (1980)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Gargano, L.: Time Optimal Gathering in Sensor Networks. In: Prencipe, G., Zaks, S. (eds.) SIROCCO 2007. LNCS, vol. 4474, pp. 7–10. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Karp, R.M.: On the computational complexity of combinatorial problems. Networks 5, 45–68 (1975)MathSciNetMATHGoogle Scholar
  13. 13.
    Kowalski, D.R., Nussbaum, E., Segal, M., Milyeykovsky, V.: Scheduling Problems in Transportation Networks of Line Topology (2011) (manuscript), http://www.cs.bgu.ac.il/~segal/sch.pdf
  14. 14.
    Leighton, F.T., Maggs, B.M., Rao, S.B.: Packet routing and job-shop scheduling in O(congestion + dilation) steps. Combinatorica 14(2), 167–180 (1994)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Li, C.-L., McCormick, S.T., Simchi-Levi, D.: The complexity of finding two disjoint paths with min-max objective function. Discrete Appl. Math. 26(1), 105–115 (1990)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Leighton, F.T., Maggs, B.M., Richa, A.: Fast algorithms for finding O(Congestion + Dilation) packet routing schedules. Combinatorica 19(3), 375–401 (1999)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Leung, J.Y.-T., Tam, T., Young, G.: On-line routing of real-time messages. J. of Paral. and Dist. Computing 34, 211–217 (1996)CrossRefGoogle Scholar
  18. 18.
    Liu, K.-S., Zaks, S.: Scheduling in synchronous networks and the greedy algorithm. Theor. Comput. Sci. 220(1), 157–183 (1999)CrossRefGoogle Scholar
  19. 19.
    Mansour, Y., Patt-Shamir, B.: Greedy packet scheduling on shortest paths. Journal of Algorithms 14, 449–465 (1993)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Ostrovsky, R., Rabani, Y.: Universal O(congestion+dilation+log1 + ε N) local control packet switching algorithms. In: STOC, pp. 644–653 (1997)Google Scholar
  21. 21.
    Peis, B., Skutella, M., Wiese, A.: Packet Routing on the Grid. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp. 120–130. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  22. 22.
    Rabani, Y., Tardos, E.: Distributed packet switching in arbitrary networks. In: STOC, pp. 366–375 (1996)Google Scholar
  23. 23.
    Revah, Y., Segal, M.: Improved algorithms for data-gathering time in sensor networks II: ring, tree, and grid Topologies. International Journal of Distributed Sensor Networks 5, 463–479 (2009)CrossRefGoogle Scholar
  24. 24.
    Robertson, N., Seymour, P.D.: Graph minors. XIII. The disjoint paths problem. J. Combin. Theory Ser. B 63(1), 65–110 (1995)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Yu, C.-C., Lin, C.-H., Wang, B.-F.: Improved algorithms for finding length-bounded two vertex-disjoint paths in a planar graph and minmax k vertex-disjoint paths in a directed acyclic graph. Journal of Computer and System Sciences 76, 697–708 (2010)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Dariusz Kowalski
    • 1
  • Zeev Nutov
    • 2
  • Michael Segal
    • 3
  1. 1.Department of Computer ScienceUniversity of LiverpoolLiverpoolUK
  2. 2.Department of Computer ScienceThe Open University of IsraelRaananaIsrael
  3. 3.Department of Communication Systems EngineeringBen-Gurion University of the NegevBeer-ShevaIsrael

Personalised recommendations