Relevance of Nanotechnology to Africa: Synthesis, Applications, and Safety

  • Ndeke Musee
  • Lucky Sikhwivhilu
  • Mary Gulumian


In this chapter, two nanotechnology-based applications relevant to Africa in promoting sustainability and achievement of the Millennium development goals (MDGs) are presented. The applications comprise the provision of therapeutic treatment of diseases (HIV/AIDS and malaria) and the treatment of contaminated water through purification, remediation, and disinfection process to promote access to clean water to millions of African inhabitants without clean drinking water. Extensive examination of the available scientific literature suggests that nanotechnology can potentially improve the provision of health and water services in the African continent. While the authors agree these benefits are of great relevance to the continent, the chapter gives insights into the concerns related to the potential risks posed by nanotechnology-based products both to humans and other ecological systems. In addition, the chapter seeks to outline the chemistry underpinning the development of nanotechnology and its relevance in achieving sustainable development within the context of developmental challenges in Africa. Finally, as the future socioeconomic status will be mostly defined by nanotechnology capabilities, Africa should be alert to these changes and take advantage, particularly, at this early development phase of nanotechnology development.


Silver Nanoparticles Gold Nanoparticles TiO2 Nanoparticles Zinc Oxide Solid Lipid Nanoparticles 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    de Heer WA, Bonard J-M, Fauth K et al (1997) Electron field emitters based on carbon nanotube films. Adv Mater 9:87–89Google Scholar
  2. 2.
    Tans SJ, Devoret MH, Dai H et al (1997) Individual single-wall carbon nanotubes as quantum wires. Nature 386:474–477Google Scholar
  3. 3.
    Dai H, Hafner JH, Rinzler AG et al (1996) Nanotubes as nanoprobes in scanning probe microscopy. Nature 384:147–150Google Scholar
  4. 4.
    Gao G (2004) Synthesis, properties and applications. Imperial College Press, LondonGoogle Scholar
  5. 5.
    Endo M, Takeuchi K, Igarashi S et al (1993) The production and structure of pyrolytic carbon nanotubes (PCNTs). J Phys Chem Solids 54:1841–1848Google Scholar
  6. 6.
    Rinzler AG, Liu J, Dai H et al (1998) Large scale purification of single-wall carbon nanotubes: process, product, and characterization. Appl Phys A 67:29–37Google Scholar
  7. 7.
    Amelinckx S, Zhang XB, Bernaerts D et al (1994) A formation mechanism for catalytically grown helix-shaped graphite nanotubes. Science 265:635–639Google Scholar
  8. 8.
    Setlur AA, Dai JY, Lauerhaas JM, Chang RPH (1998) Formation of filled carbon nanotubes and nanoparticles using polycyclic aromatics hydrocarbon molecules. Carbon 36:721–723Google Scholar
  9. 9.
    Bladh K, Falk LKL, Rohmund F (2000) On the iron-catalysed growth of single-walled carbon nanotubes and encapsulated metal particles in the gas phase. Appl Phys A Mater Sci Process 70:317–322Google Scholar
  10. 10.
    Diener MD, Nichelson N, Alford JM (2000) Synthesis of single-walled carbon nanotubes in flames. J Phys Chem B 2000 104:9615–9620Google Scholar
  11. 11.
    Loiseau A, Willaime F (2000) Filled and mixed nanotubes: from TEM studies to the growth mechanism within a phase-diagram approach. Appl Surf Sci 164:227–240Google Scholar
  12. 12.
    Puddephatt RJ (1978) The chemistry of gold. Elsevier Science, AmsterdamGoogle Scholar
  13. 13.
    Hyatt AD, Eaton BT (eds) (1993) Immune-gold electron microscopy in virus diagnosis and research, CRC Press. Boca Raton, pp 178–454Google Scholar
  14. 14.
    Hayat MA (1989) (ed) Colloidal gold: principles, methods and applications. Academic Press, San DiegoGoogle Scholar
  15. 15.
    Alivisatos AP (1996) Perspectives on physical chemistry of semiconductor nanocrystals. J Phys Chem 100:13226–13239Google Scholar
  16. 16.
    Chan WCW, Nie S (1998) Quantum dot bioconjugates for ultra sensitive non isotopic detection. Sci 281:2016–2018Google Scholar
  17. 17.
    Mckenzie KJ, Marken F (2003) Accumulation and reactivity of the redox protein cytochrome in mesoporous films of TiO2 phytate. Langmuir 19:4327–4331Google Scholar
  18. 18.
    Haruta M (1997) Size- and Support-dependency in catalysis of gold. Catal Today 36:153–166Google Scholar
  19. 19.
    Haruta M, Yamada N, Kobayashi T et al (1989) Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. J Catal 115:301–309Google Scholar
  20. 20.
    Haruta M, Tsubota S, Kobayashi T et al (1993) Low-temperature oxidation of CO over gold supported on TiO2, α-Fe2O3, and Co3O4. J Catal 144:175–192Google Scholar
  21. 21.
    Wang J, Koel BE (1998) IRAS studies of NO2, N2O3, and N2O4 adsorbed on Au(111) surfaces and reactions with co-adsorbed H2O. J Phys Chem A 102:8573–8579Google Scholar
  22. 22.
    Okumura M, Tanaka K, Ueda A et al (1997) The reactivities of Dimethylgold(III)Beta-Diketone on the Surface of TiO2–a novel preparation method for Au catalysts. Solid State Ion 95:143–149Google Scholar
  23. 23.
    Wei Z, Xin Q, Guo X et al (1990) Titanaia-modified hydrodesulphurization catalysts I : effect of preparation techniques on morphology and properties of TiO2-Al2O3 Carrier. Appl Catal A 63:305–309Google Scholar
  24. 24.
    Weibel A, Bouchet R, Knauth P (2006) Electrical properties and defect chemistry of anatase (TiO2). Solid State Ion 177:229–236Google Scholar
  25. 25.
    Pajonk GM (1991) Aerogel catalysts. Appl Catal 72:217–266Google Scholar
  26. 26.
    Reluert J, Quijada R, Arias V (1998) Porous titania obtained through polymer incorporated composites. Chem Mater 10:3923–3927Google Scholar
  27. 27.
    Fox MA, Dulay MT (1993) Heterogeneous photocatalysis. Chem Rev 93:341–357Google Scholar
  28. 28.
    Sopyan I, Murasawa S, Hashimoto S et al (1998) Highly efficient TiO2 film photocatalyst: degradation of gaseous acetaldehyde. Chem Lett 10:723–726Google Scholar
  29. 29.
    Zhang Z, Wang C–C, Zakaria R et al (1998) Role of particle size in nanocrystalline TiO2-based photocatalysts. J Phys Chem B 102:10871–10878Google Scholar
  30. 30.
    Wang C–C, Ying JY (1999) Sol-Gel Synthesis and hydrothermal processing of anatase and rutile titania nanocrystals. Chem Mater 11:3113–3120Google Scholar
  31. 31.
    Huang W, Tang X, Wang Y et al (2000) Selective synthesis of anatase and rutile via ultrasound irradiation. Chem Commun 15:1415–1416Google Scholar
  32. 32.
    Liu H, Yang W, Ma Y et al (2002) Promoted phase transition of titania nanoparticles prepared by a photo-assisted sol-gel method. New J Chem 26:975Google Scholar
  33. 33.
    Hoyer P (1996) Formation of a titanium dioxide nanotu be array. Langmuir 12:1411–1413Google Scholar
  34. 34.
    Liu SM, Gan LM, Liu LH et al (2002) Synthesis of single-crystalline TiO2 nanotubes. Chem Mater 14:1391–1397Google Scholar
  35. 35.
    Wang YQ, Hu GQ, Duan XF et al. (2002) Microstructure and formation mechanism of titanium dioxide nanotubes. Chem Phys Lett 365:427–431Google Scholar
  36. 36.
    Ivanovskaya VV, Enyashin AN, Ivanovskii AL (2003) Electronic structure of single-walled TiO2 and VO2 nanotubes. Mendeleev Commun 13:5–7Google Scholar
  37. 37.
    Kasuga T, Hiramatu M, Hirano M et al (1997) Synthesis and functionalization titania nanotube. Mater Res 12:607–609Google Scholar
  38. 38.
    Jung JH, Kobayashi H, van Bommel KJC et al (2002) Creation of novel helical ribbon and double-layered nanotube TiO2 structures using an organogel template. Chem Mater 14:1445–1447Google Scholar
  39. 39.
    Imai H, Takei Y, Shimizu K et al (1999) Direct preparation of anatase TiO2 nanotubes in porous alumina membranes. J Mater Chem 9:2971–2972Google Scholar
  40. 40.
    Dignam MJ, Moskovits M (1973) Influence of surface roughness on the transmission and reflectance spectra of adsorbed species. J Chem Soc, Faraday Trans 2(69):95–78Google Scholar
  41. 41.
    Mahata N, Raghavan KV, Vishwanathan V et al (2001) Phenol hydrogenation over palladium supported on magnesia: relationship between catalyst structure and performance. Phys Chem Chem Phys 3:2712–2719Google Scholar
  42. 42.
    Mahmood FS, Gould RD, Salih MH (1995) D.C. properties of ZnO thin films prepared by r.f. magnetron sputtering. Thin Solid Films 270:376–379Google Scholar
  43. 43.
    Gorla CR, Emanetoglu NW, Liang S et al (1999) Structural, optical, and surface acoustic wave properties of epitaxial ZnO films grown on (0112) sapphire by metalorganic chemical vapor deposition. J Appl Phys 85:2595–2602Google Scholar
  44. 44.
    Look DC (2001) Recent advances in ZnO materials and devices. Mater Sci Eng, B 80:383–387Google Scholar
  45. 45.
    Hvam JM (1973) Exciton-exciton interaction and laser emission in high-purity ZnO. Solid State Commun 12:95–97Google Scholar
  46. 46.
    Klingshirn C (1975) Room-temperature stimulated emission of ZnO: alternatives to excitonic lasing. Phys Status Solidi B 71:547–556Google Scholar
  47. 47.
    Caillaud FA, Smith A, Baumard JM (1992) Additives content in ZnO films prepared by spray pyrolysis. J Eur Ceram Soc 9:447–452Google Scholar
  48. 48.
    Musić S, Dragčević D, Malijković M et al (2003) Influence of chemical synthesis on the crystallization and properties of zinc oxide. Mater Chem Phys 77:521–530Google Scholar
  49. 49.
    Wang X, Li Y (2002) Selected-control hydrothermal synthesis of α- and β-MnO2 single crystal nanowires. J Am Chem Soc 124:2880–2881Google Scholar
  50. 50.
    Chu D, Zeng Y, Jiang D (2007) Controlled growth and properties of Pb2+ doped ZnO nanodisks. Mater Res Bull 42:814–819Google Scholar
  51. 51.
    Sun Y, Xia Y (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298:2176–2179Google Scholar
  52. 52.
    Kirk-Othmer (1993) Encyclopedia of chemical technology***, vol 5. Wiley, CanadaGoogle Scholar
  53. 53.
    Christoffel EG (1989) Laboratory studies of heterogeneous catalytic processes. Elsevier, OxfordGoogle Scholar
  54. 54.
    Corma A (1995) Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions. Chem Rev 95:559–614Google Scholar
  55. 55.
    Ardizzone S, Bianchi CL, Ragaini V et al (1999) SO4-ZrO2 catalysts for the esterification of benzoic to methylbenzoate. Catal Lett 62:59–65Google Scholar
  56. 56.
    Salamanca-Buentello F, Persad DL, Court EB et al (2005) Nanotechnology and the developing world. PLoS Med 2:383–386Google Scholar
  57. 57.
    UNEP (2007) UNEP Emerging Challenges—Nanotechnology and the Environment, Geo Yearbook 2007. Nairobi, Kenya, UNEPGoogle Scholar
  58. 58.
    Montgomery MA, Elimelech M (2007) Water and sanitation in developing countries: including health in the equation. Environ Sci Technol 41:17–24Google Scholar
  59. 59.
    Eshelby K (2007) Dying for a drink. BMJ 334:610–612Google Scholar
  60. 60.
    Maclurcan DC (2005) Nanotechnology and Developing Countries, Part 2: what realities? AzoNano J Nanotechnol. doi: 10.2240/azojono0105
  61. 61.
    DST (2005) National nanotechnology strategy. Department of Science and Technology, PretoriaGoogle Scholar
  62. 62.
    DST (2010) Nanoscience and nanotechnology 10-year research plan. Department of Science and Technology, PretoriaGoogle Scholar
  63. 63.
    Hillie T, Hlophe M (2007) Nanotechnology and the challenge of clean water. Nat Nanotechnol 2:663–664Google Scholar
  64. 64.
    Hillie T, Munasinghe M, Hlope M et al. (2006) Nanotechnology, water and development, Paper commissioned as part of the Global Dialogue on Nanotechnology and the poor: opportunities and risks, Meridian Institute’s, Web link:
  65. 65.
    Theron J, Walker JA, Cloete TE (2008) Nanotechnology and water treatment: applications and emerging opportunities. Crit Rev Microbiol 34:43–69Google Scholar
  66. 66.
    Baker RW (2004) Membrane technology and applications. Wiley, EnglandGoogle Scholar
  67. 67.
    Srivastava AK, Srivastava ON, Talapatra S et al (2004) Carbon nanotube filters. Nat Mat 3:610–614Google Scholar
  68. 68.
    Tully DC, Frechet JMJ (2001) Dendrimers at surfaces and interfaces: chemistry and applications. J Chem Commun 14:1229–1239Google Scholar
  69. 69.
    Gao C, Yan D (2004) Hyperbranched polymers: from synthesis to applications. Prog Polym Sci 29:183–275Google Scholar
  70. 70.
    Del Valle EMM (2004) Cyclodextrins and their uses, A review. Process Biochem 39:1033–1046Google Scholar
  71. 71.
    Mamba BB, Krause RW, Malefetse TJ et al (2007) Monofunctionalized cyclodextrin polymers for the removal of organic pollutants from water. Environ Chem Lett 5:79–84Google Scholar
  72. 72.
    Salipira KL, Mamba BB, Krause RW et al (2008) Cyclodextrin polyurethanes polymerised with carbon nanotubes for the removal of organic pollutants in water. Water SA 34:113–118Google Scholar
  73. 73.
    Sawicki R, Mercier L (2006) Evaluation of mesoporous cyclodextrin-silica nanocomposites for the removal of pesticides from aqueous media. Environ Sci Technol 40:1978–1983Google Scholar
  74. 74.
    Arkas M, Allabashi R, Tsiourvas D et al (2006) Organic/inorganic hybrid filters based on dendritic and cyclodextrin “nanosponges” for the removal of organic pollutants from water. Environ Sci Technol 40:2771–2777Google Scholar
  75. 75.
    Nair AS, Pradeep T (2003) Halocarbon mineralization and catalytic destruction by metal nanoparticles. Curr Sci 84:1560–1564Google Scholar
  76. 76.
    Predeep TA, Anshup (2009) Nobel metal nanoparticles for water purification: a critical review. Thin Solid Films 517:6441–6478Google Scholar
  77. 77.
    Pradeep TA (2009) In: Savage N, Diallo M, Duncan J, Street A, Sustich R (eds) Nanotechnology applications for clean water. William Andrew Publication, USA, p 2009Google Scholar
  78. 78.
    Schwarzenbach RP, Escher BI, Fenner K et al (2006) The challenge of micropollutants in aquatic systems. Sci 313:1072–1077Google Scholar
  79. 79.
    Ahluwalia SS, Goyal D (2007) Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour Technol 98:2243–2257Google Scholar
  80. 80.
    Savage N, Diallo MS (2005) Nanomaterials and water purification: opportunities and challenges. J Nanopart Res 7:331–342Google Scholar
  81. 81.
    Tratnyek PG, Johnson RL (2006) Nanotechnologies for environmental cleanup. Nanotoday 1:44–48Google Scholar
  82. 82.
    Li Q, Mahendra S, Lyon DY et al (2008) Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res 42:4591–4602Google Scholar
  83. 83.
    Wang CB, Zhang WX (1997) Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ Sci Technol 31:2154–2156Google Scholar
  84. 84.
    Liou YH, Lo SL, Kuan WH et al (2006) Effect of precursor concentration on the characterics of nanoscale zerovalent iron and its reactivity with nitrate. Wat Res 40:2485–2492Google Scholar
  85. 85.
    Sohn K, Kang SW, Ahn S et al (2006) Fe(0) nanoparticles for nitrate reduction: stability, reactivity, and transformation. Environ Sci Technol 40:5514–5519Google Scholar
  86. 86.
    Cao J, Elliott D, Zhang WX (2005) Perchlorate reduction by nanoscale iron particles. J Nanopart Res 7:499–506Google Scholar
  87. 87.
    Ponder SM, Darab JG, Mallouk TE (2000) Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron. Environ Sci Technol 34:2564–2569Google Scholar
  88. 88.
    Kanel SR, Manning B, Charlet L et al (2005) Removal of arsenic (III) from groundwater by nanoscale zero-valent iron. Environ Sci Technol 39:1291–1298Google Scholar
  89. 89.
    Li XQ, Zhang WX (2006) Iron nanoparticles, the core–shell structure and unique properties for Ni (II) sequestration. Langmuir 22:4638–4642Google Scholar
  90. 90.
    Keum YS, Li QX (2004) Reduction of nitroaromatic pesticides with zerovalent iron. Chemosphere 54:255–263Google Scholar
  91. 91.
    Zhang L, Fang M (2010) Nanomaterials in pollution trace detection and environmental improvement. Nano Today 5:128–142Google Scholar
  92. 92.
    Elliot DW, Zhang WX (2001) Field assessment of nanoscale biometallic particles for ground water treatment. Environ Sci Technol 35:4922–4926Google Scholar
  93. 93.
    He P, Zhao DY (2005) Preparation and characterization of a new class of starch–stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water. Environ Sci Technol 39:3314–3320Google Scholar
  94. 94.
    Schrick B, Hydutsky BW, Blough JL, Mallouk TE (2004) Delivery vehicles for zerovalent metal nanoparticles in soil and groundwater. Chem Mater 16:2187–2193Google Scholar
  95. 95.
    He F, Zhao DY, Liu J et al (2007) Stabilization of Fe-Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater. Ind Eng Chem Res 46:29–34Google Scholar
  96. 96.
    Saleh N, Sirk K, Liu YQ et al (2007) Surface modifications enhance nano iron transport and NAPL targeting in satulated porous media. Envrion Eng Sci 24:45–57Google Scholar
  97. 97.
    Kikuchi Y, Sunada K, Iyoda T et al (1997) Photocatalytic bactericidal effect of TiO2 thin films: dynamic view of the active oxygen species responsible for the effect. J Photochem Photobiol A Chem 106:51–56Google Scholar
  98. 98.
    Choi H, Stathatos E, Dionysiou D (2007) Photocatalytic TiO2 films and membranes for the development of efficient wastewater treatment and reuse systems. Desalination 202:199–206Google Scholar
  99. 99.
    Hoff JC (1986) Inactivation of microbial agents by chemical disinfectants. EPA/600/S602-686/067. U.S. Environmental Protection Agency, Cincinnati, OHGoogle Scholar
  100. 100.
    Hunt NK, Marinas BJ (1997) Kinetics of Escherichia Coli inactivation with ozone. Wat Res 31(6):1355–1362Google Scholar
  101. 101.
    Morones JR, Elechiguerra JL, Camacho A et al (2005) The bactericidal effect of silver nanoparticles. Nanotechnol 16:2346–2353Google Scholar
  102. 102.
    Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram—negative bacterium Escherichia coli. Appl Environ Microbiol 73:1712–1720Google Scholar
  103. 103.
    Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275:177–182Google Scholar
  104. 104.
    Kim JS, Kuk E, Yu KM et al (2007) Antimicrobial effects of silver nanoparticles. Nanomedicine 3:95–101Google Scholar
  105. 105.
    Shahverdi AR, Kakhimi A, Shahverdi HD, Minaian S (2007) Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomed Nanotechnol Biol Med 3:168–171Google Scholar
  106. 106.
    Shrivastava S, Bera T, Roy A et al. (2007) Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnol 18(22). doi: 10.1088/0957-4484/18/22/22510_3
  107. 107.
    Yoon KY, Byeon JH, Park JH et al (2007) Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci Total Environ 373:572–575Google Scholar
  108. 108.
    Ju-Nam Y, Lead JR (2008) Manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental implications. Sci Total Environ 400:396–414Google Scholar
  109. 109.
    Danilczuk M, Lund A, Saldo J et al (2006) Conduction electron spin resonance of small silver particles. Spectrochim Acta A 63:189–191Google Scholar
  110. 110.
    Mills A, LeHunte S (1997) An overview of semiconductor photocatalysis. J Photochem Photobiol A Chem 108:1–35Google Scholar
  111. 111.
    Lee S, Nakamura M, Ohgaki S (1998) Inactivation of phage Qβ by 254 nm UV light and titanium dioxide photocatalyst. J Environ Sci Health A 33:1643–1655Google Scholar
  112. 112.
    Inaba R, Fukahori T, Hamamoto M et al (2006) Synthesis of nanosized TiO2 particles in reverse micelle systems and their photocalytic activity for degradation of toluene in gas phase. J Mol Cat A: Chem 200:247–254Google Scholar
  113. 113.
    Shephard GS, Stockenstrom S, de Villiers D et al (2002) Degradation of microcystin toxins in a falling film photocatalytic reactor with immobilized titanium dioxide catalyst. Water Res 36:140–146Google Scholar
  114. 114.
    Kominami H, Murakami S, Kato J et al (2002) Correlation between some physical properties of titanium dioxide particles and their photocatalytic activity for some probe reactions in aqueous systems. J Phys Chem B 106:10501–10507Google Scholar
  115. 115.
    Toma D, Bertrand G, Chwa SO et al. (2006) Comparative study on the photocatalytic decomposition of nitrogen oxides using TiO2 coatings prepared by conventional plasma spraying and suspension plasma spraying. Surf Coat Technol 200:5855–5862).Google Scholar
  116. 116.
    Joo J, Kwon SG, Yu T et al (2005) Large– scale synthesis of TiO2 nanorods via nonhydrolytic sol-gel ester elimination reaction and their application to photocatalytic inactivation of E. coli. J Phys Chem B 109:15297–15302Google Scholar
  117. 117.
    Egerton TA, Kosa SA, Christensen PA (2006) Photoelectrocatalytic disinfection of E. coli suspensions by iron doped TiO2. Phys Chem Chem Phys 8:398–406Google Scholar
  118. 118.
    Page K, Palgrave RG, Parkin IP et al (2007) Titania and silver-titania composite films on glass-potent antimicrobial coatings. J Mat Chem 17(1):95–104Google Scholar
  119. 119.
    Yu JC, Yu J, Zhao J (2002) Enhanced photocatalytic activity of mesoporous and ordinary TiO2 thin films by sulfuric acid treatment. Appl Catal B Environ 36:31–43Google Scholar
  120. 120.
    das Neves J, Amiji MM, Bahia MF et al (2010) Nanotechnology-based systems for the treatment and prevention of HIV/AIDS. Adv Drug Deliv Rev 62:458–477Google Scholar
  121. 121.
    Gunaseelan S, Gunaseelan K, Deshmukh M et al (2010) Surface modifications of nanocarriers for effective intracellular delivery of anti-HIV drugs. Adv Drug Deliv Rev 62:518–531Google Scholar
  122. 122.
    Gupta U, Jain NK (2010) Non-polymeric nano-carriers in HIV/AIDS drug delivery and targeting. Adv Drug Deliv Rev 62:478–490Google Scholar
  123. 123.
    Sharma P, Garg S (2010) Pure drug and polymer based nanotechnologies for the improved solubility, stability, bioavailability and targeting of anti-HIV drugs. Adv Drug Del Rev 62:491–502Google Scholar
  124. 124.
    Wong HL, Chattopadhyay N, Wu XY et al (2010) Nanotechnology applications for improved delivery of antiretroviral drugs to the brain. Adv Drug Deliv Rev 62:503–517Google Scholar
  125. 125.
    du Toit LC, Pillay V, Choonara YE (2010) Nano-microbicides: challenges in drug delivery, patient ethics and intellectual property in the war against HIV/AIDS. Adv Drug Del Rev 62:532–546Google Scholar
  126. 126.
    Hammer SM, Eron JJ Jr, Reiss P et al (2008) International AIDS Society-USA, antiretroviral treatment of adult HIV infection: 2008 recommendations of the International AIDS Society-USA panel. JAMA 300:555–570Google Scholar
  127. 127.
    Blankson JN, Persaud D, Siliciano RF (2002) The challenge of viral reservoirs in HIV-1 infection. Ann Rev Med 53:557–593Google Scholar
  128. 128.
    Amiji MM, Vyas TK, Shah LK (2006) Role of nanotechnology in HIV/AIDS treatment: potential to overcome the viral reservoir challenge. Discov Med 6:157–162Google Scholar
  129. 129.
    Chun TW, Justement JS, Moir S et al (2007) Decay of the HIV reservoir in patients receiving antiretroviral therapy for extended periods: implications for eradication of virus. J Infect Dis 195:1762–1764Google Scholar
  130. 130.
    Temesgen Z, Warnke D, Kasten MJ (2006) Current status of antiretroviral therapy. Expert Opin Pharmacother 7:1541–1554Google Scholar
  131. 131.
    Spitzenberger TJ, Heilman D, Diekmann C et al (2007) Novel delivery system enhances efficacy of antiretroviral therapy in animal model for HIV-1 encephalitis. J Cereb Blood Flow Metab 27:1033–1042Google Scholar
  132. 132.
    Govender T, Ojewole E, Naidoo P et al (2008) Polymeric nanoparticles for enhancing antiretroviral drug therapy. Drug Deliv 15:493–501Google Scholar
  133. 133.
    Urdea M, Penny LA, Olmsted SS et al (2006) Requirements for high impact diagnostics in the developing world. Nature 444(Suppl 1):73–79Google Scholar
  134. 134.
    Yager P, Edwards T, Fu E, Helton K et al (2006) Microfluidic diagnostic technologies for global public health. Nature 442:412–418Google Scholar
  135. 135.
    Gardella F, Assi S, Simon F et al (2008) Antimalarial drug use in general populations of tropical Africa. Malar J 7:124Google Scholar
  136. 136.
    Greenwood BM, Fidock DA, Kyle DE et al (2008) Malaria: progress, perils, and prospects for eradication. J Clin Invest 118:1266–1276Google Scholar
  137. 137.
    Skinner-Adams TS, McCarthy JS, Gardiner DL et al (2008) HIV and malaria co-infection: interactions and consequences of chemotherapy. Trends Parasitol 24:264–271Google Scholar
  138. 138.
    Santos-Magalhães NS, Mosqueira VCF (2010) Nanotechnology applied to the treatment of malaria. Adv Drug Del Rev 62:560–575Google Scholar
  139. 139.
    Winstanley P, Ward S (2006) Malaria chemotherapy. Adv Parasitol 61:47–76Google Scholar
  140. 140.
    Vauthier C and P. Couvreur P (2007) Nanomedicines: a new approach for the treatment of serious diseases J Biomed Nanotechnol 3:223–234Google Scholar
  141. 141.
    Forrest ML, Kwon GS (2008) Clinical developments in drug delivery nanotechnology. Adv Drug Deliv Rev 60:861–862Google Scholar
  142. 142.
    Foger F, Noonpakdee W, Loretz B et al (2006) Inhibition of malarial topoisomerase II in Plasmodium falciparum by antisense nanoparticles. Int J Pharm 319:139–146Google Scholar
  143. 143.
    Barker RH Jr, Metelev V, Coakley A et al (1998) Plasmodium falciparum: effect of chemical structure on efficacy and specificity of antisense oligonucleotides against malaria in vitro. Exp Parasitol 88:51–59Google Scholar
  144. 144.
    Noonpakdee W, Pothikasikorn J, Nimitsantiwong W et al (2003) Inhibition of Plasmodium falciparum proliferation in vitro by antisense oligodeoxynucleotides against malarial topoisomerase II. Biochem Biophys Res Commun 302:659–664Google Scholar
  145. 145.
    Wong HL, Bendayan R, Rauth AM et al (2006) A mechanistic study of enhanced doxorubicin uptake and retention in multidrug resistant breast cancer cells using a polymer-lipid hybrid nanoparticle system. J Pharmacol Exp Ther 317:1372–1381Google Scholar
  146. 146.
    Pacurari M, Castranova V, Vallyathan V (2010) Single- and multi-wall carbon nanotubes versus asbestos: are the carbon nanotubes a new health risk to humans? J Toxicol Environ Health A 73:378–395Google Scholar
  147. 147.
    Wang H, Wang J, Deng X et al (2004) Biodistribution of carbon single-wall carbon nanotubes in mice. J Nanosci Nanotechnol 4:1019–1024Google Scholar
  148. 148.
    Pantarotto D, Singh R, McCarthy D et al (2004) Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew Chem Int Ed Engl 43:5242–5246Google Scholar
  149. 149.
    Ji Z, Zhang D, Li L et al (2009) The hepatotoxicity of multi-walled carbon nanotubes in mice. Nanotechnol 20:445101Google Scholar
  150. 150.
    Huczko A, Lange H (2001) Carbon nanotubes: experimental evidence for a null risk of skin irritation and allergy. Fullerene Sci Technol 9:247–250Google Scholar
  151. 151.
    Murray AR, Kisin E, Leonard SS et al (2009) Oxidative stress and inflammatory response in dermal toxicity of single-walled carbon nanotubes. Toxicol 257:161–171Google Scholar
  152. 152.
    Ma-Hock L, Treumann S, Strauss V et al (2009) Inhalation toxicity of multiwall carbon nanotubes in rats exposed for 3 months. Toxicol Sci 112:468–481Google Scholar
  153. 153.
    Mitchell LA, Gao J, Wal RV et al (2007) Pulmonary and systemic immune response to inhaled multiwalled carbon nanotubes. Toxicol Sci 100:203–214Google Scholar
  154. 154.
    Poland CA, Duffin R, Kinloch I et al (2008) Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 3:423–428Google Scholar
  155. 155.
    Takagi A, Hirose A, Nishimura T et al (2008) Induction of mesothelioma in p53 ± mouse by intraperitoneal application of multi-wall carbon nanotube. J Toxicol Sci 33:105–116Google Scholar
  156. 156.
    Sakamoto Y, Nakae D, Fukumori N et al (2009) Induction of mesothelioma by a single intrascrotal administration of multi-wall carbon nanotube in intact male Fischer 344 rats. J Toxicol Sci 34:65–76Google Scholar
  157. 157.
    Pacurari M, Yin XJ, Ding M et al (2008) Oxidative and molecular interactions of multi-wall carbon nanotubes (MWCNT) in normal and malignant human mesothelial cells. Nanotoxicol 2:155–170Google Scholar
  158. 158.
    Pacurari M, Yin XJ, Zhao J et al (2008) Raw single-wall carbon nanotubes induce oxidative stress and activate MAPKs, AP-1, NF-kappaB, and Akt in normal and malignant human mesothelial cells. Environ Health Perspect 116:1211–1217Google Scholar
  159. 159.
    Wang L, Mercer RR, Rojanasakul Y et al (2010) Direct fibrogenic effects of dispersed single-walled carbon nanotubes on human lung fibroblasts. J Toxicol Environ Health A 73:410–422Google Scholar
  160. 160.
    Lindberg HK, Falck GC, Suhonen S et al (2009) Genotoxicity of nanomaterials: DNA damage and micronuclei induced by carbon nanotubes and graphite nanofibres in human bronchial epithelial cells in vitro. Toxicol Lett 186:166–173Google Scholar
  161. 161.
    Sayes CM, Liang F, Hudson JL et al (2006) Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro. Toxicol Lett 161:135–142Google Scholar
  162. 162.
    Monteiro-Riviere NA, Nemanich RJ, Inman AO et al (2005) Multi-walled carbon nanotube interactions with human epidermal keratinocytes. Toxicol Lett 155:377–384Google Scholar
  163. 163.
    Jia G, Wang H, Yan L, Wang X et al (2005) Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol 39:1378–1383Google Scholar
  164. 164.
    Kagan VE, Tyurina YY, Tyurin VA et al (2006) Direct and indirect effects of single walled carbon nanotubes on RAW 264.7 macrophages: role of iron. Toxicol Lett 165:88–100Google Scholar
  165. 165.
    Simon-Deckers A, Gouget B, Mayne-L’hermite M et al (2008) In vitro investigation of oxide nanoparticle and carbon nanotube toxicity and intracellular accumulation in A549 human pneumocytes. Toxicol 253:137–146Google Scholar
  166. 166.
    Hardman R (2006) A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 114:165–172Google Scholar
  167. 167.
    Aldana J, Wang YA, Peng X (2001) Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols. J Am Chem Soc 123:8844–8850Google Scholar
  168. 168.
    Aldana J, Lavelle N, Wang Y et al (2005) Size-dependent dissociation pH of thiolate ligands from cadmium chalcogenide nanocrystals. J Am Chem Soc 127:2496–2504Google Scholar
  169. 169.
    Kim S, Bawendi MG (2003) Oligomeric ligands for luminescent and stable nanocrystal quantum dots. J Am Chem Soc 125:14652–14653Google Scholar
  170. 170.
    Tsay JM, Michalet X (2005) New light on quantum dot cytotoxicity. Chem Biol 12:1159–1161Google Scholar
  171. 171.
    Green M, Howman E (2005) Semiconductor quantum dots and free radical induced DNA nicking. Chem Commun (Camb)7:121–123Google Scholar
  172. 172.
    Ipe BI, Lehnig M, Niemeyer CM (2005) On the generation of free radical species from quantum dots. Small 1:706–709Google Scholar
  173. 173.
    Choi AO, Brown SE, Szyf M, Maysinger D (2008) Quantum dot-induced epigenetic and genotoxic changes in human breast cancer cells. J Mol Med 86:291–302Google Scholar
  174. 174.
    Hoshino A, Fujioka K, Oku T et al (2004) Physicochemical properties and cellular ttoxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett 4:2163–2169Google Scholar
  175. 175.
    Selvan ST, Tan TT, Ying JY (2005) Robust, non-cytotoxic, silica-coated CdSe quantum dots with efficient photoluminescence. Adv Mater 17:1620–1625Google Scholar
  176. 176.
    Guo G, Liu W, Liang J et al (2007) Probing the cytotoxicity of CdSe quantum dots with surface modification. Material Lett 61:1641–1644Google Scholar
  177. 177.
    Larese FF, D’Agostin F, Crosera M et al (2009) Human skin penetration of silver nanoparticles through intact and damaged skin. Toxicol 255:33–37Google Scholar
  178. 178.
    Chen X, Schluesener HJ (2008) Nanosilver: a nanoproduct in medical application. Toxicol Lett 176:1–12Google Scholar
  179. 179.
    Hussain SM, Hess KL, Gearhart JM et al (2005) In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 19:975–983Google Scholar
  180. 180.
    Elechiguerra JL, Burt JL, Morones JR et al (2005) Interaction of silver nanoparticles with HIV-1. J Nanobiotechnol 3:6Google Scholar
  181. 181.
    Ji JH, Jung JH, Kim SS et al (2007) Twenty-eight-day inhalation toxicity study of silver nanoparticles in Sprague-Dawley rats. Inhal Toxicol 19:857–871Google Scholar
  182. 182.
    Sung JH, Ji JH, Yoon JU et al (2008) Lung function changes in Sprague-Dawley rats after prolonged inhalation exposure to silver nanoparticles. Inhal Toxicol 20:567–574Google Scholar
  183. 183.
    Sung JH, Ji JH, Park JD et al (2009) Subchronic inhalation toxicity of silver nanoparticles. Toxicol Sci 108:452–461Google Scholar
  184. 184.
    Goodman CM, McCusker CD, Yilmaz T et al (2004) Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug Chem 15:897–900Google Scholar
  185. 185.
    Connor EE, Mwamuka J, Gole A et al (2005) Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1:325–327Google Scholar
  186. 186.
    Hauck TS, Ghazani AA, Chan WC (2008) Assessing the effect of surface chemistry on gold nanorod uptake, toxicity, and gene expression in mammalian cells. Small 4:153–159Google Scholar
  187. 187.
    Shukla R, Bansal V, Chaudhary M et al (2005) Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir 21:10644–10654Google Scholar
  188. 188.
    Pan Y, Neuss S, Leifert A et al (2007) Size-dependent cytotoxicity of gold nanoparticles. Small 3:1941–1949Google Scholar
  189. 189.
    Patra HK, Banerjee S, Chaudhuri U, Lahiri P et al (2007) Cell selective response to gold nanoparticles. Nanomedicine 3:111–119Google Scholar
  190. 190.
    Zharov VP, Mercer KE, Galitovskaya EN et al (2006) Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles. Biophys J 90:619–627Google Scholar
  191. 191.
    Lewinski N, Colvin V, Drezek R (2008) Cytotoxicity of nanoparticles. Small 4:26–49Google Scholar
  192. 192.
    Takenaka S, Karg E, Kreyling WG et al (2006) Distribution pattern of inhaled ultrafine gold particles in the rat lung. Inhal Toxicol 18:733–740Google Scholar
  193. 193.
    Hillyer JF, Albrecht RM (2001) Gastrointestinal persorption and tissue distribution of differently sized colloidal gold nanoparticles. J Pharm Sci 90:1927–1936Google Scholar
  194. 194.
    Paciotti GF, Myer L, Weinreich D, Goia D et al (2004) Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Deliv 11:169–183Google Scholar
  195. 195.
    Hainfeld JF, Slatkin DN, Smilowitz HM (2004) The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol 49:N309–N315Google Scholar
  196. 196.
    Cho WS, Cho M, Jeong J et al (2009) Acute toxicity and pharmacokinetics of 13 nm-sized PEG-coated gold nanoparticles. Toxicol Appl Pharmacol 236:16–24Google Scholar
  197. 197.
    Chithrani BD, Ghazani AA, Chan WC (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6:662–668Google Scholar
  198. 198.
    Pernodet N, Fang X, Sun Y, Bakhtina A et al (2006) Adverse effects of citrate/gold nanoparticles on human dermal fibroblasts. Small 2:766–773Google Scholar
  199. 199.
    Gu YJ, Cheng J, Lin CC et al (2009) Nuclear penetration of surface functionalized gold nanoparticles. Toxicol Appl Pharmacol 237:196–204Google Scholar
  200. 200.
    Ma-Hock L, Burkhardt S, Strauss V et al (2009) Development of a short-term inhalation test in the rat using nano-titanium dioxide as a model substance. Inhal Toxicol 21:102–118Google Scholar
  201. 201.
    Wang J, Chen C, Liu Y et al (2008) Potential neurological lesion after nasal instillation of TiO2 nanoparticles in the anatase and rutile crystal phases. Toxicol Lett 183:72–80Google Scholar
  202. 202.
    Wang J, Liu Y, Jiao F et al (2008) Time-dependent translocation and potential impairment on central nervous system by intranasally instilled TiO2 nanoparticles. Toxicology 254:82–90Google Scholar
  203. 203.
    van Ravenzwaay B, Landsiedel R, Fabian E et al (2009) Comparing fate and effects of three particles of different surface properties: nano-TiO(2), pigmentary TiO2 and quartz. Toxicol Lett 186:152–159Google Scholar
  204. 204.
    Zhang Z, Kleinstreuer C, Donohue JF et al (2005) Comparison of micro- and nano-size particle depositions in a human upper airway model. J Aerosol Sci 36:211–233Google Scholar
  205. 205.
    Donaldson K, Stone V, Clouter A et al (2001) Ultrafine particles. Occup Environ Med 58:211–216Google Scholar
  206. 206.
    Ferin J, Oberdorster G, Penney DP (1992) Pulmonary retention of ultrafine and fine particles in rats. Am J Respir Cell Mol Biol 6:535–542Google Scholar
  207. 207.
    Oberdorster G, Ferin J, Lehnert BE (1994) Correlation between particle size, in vivo particle persistence, and lung injury. Environ Health Perspect 102(Suppl 5):173–179Google Scholar
  208. 208.
    Renwick LC, Brown D, Clouter A, Donaldson K (2004) Increased inflammation and altered macrophage chemotactic responses caused by two ultrafine particle types. Occup Environ Med 61:442–447Google Scholar
  209. 209.
    Grassian VH, O’Shaughnessy PT, Adamcakova-Dodd A et al (2007) Inhalation exposure study of titanium dioxide nanoparticles with a primary particle size of 2 to 5 nm. Environ Health Perspect 115:397–402Google Scholar
  210. 210.
    Chen HW, Su SF, Chien CT et al (2006) Titanium dioxide nanoparticles induce emphysema-like lung injury in mice. Faseb J 20:2393–2395Google Scholar
  211. 211.
    Bermudez E, Mangum JB, Wong BA et al (2004) Pulmonary responses of mice, rats, and hamsters to subchronic inhalation of ultrafine titanium dioxide particles. Toxicol Sci 77:347–357Google Scholar
  212. 212.
    Shimizu M, Tainaka H, Oba T et al (2009) Maternal exposure to nanoparticulate titanium dioxide during the prenatal period alters gene expression related to brain development in the mouse. Part Fibre Toxicol 6:20Google Scholar
  213. 213.
    Gurr JR, Wang AS, Chen CH et al (2005) Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology 213:66–73Google Scholar
  214. 214.
    Churg A, Gilks B, Dai J (1999) Induction of fibrogenic mediators by fine and ultrafine titanium dioxide in rat tracheal explants. Am J Physiol 277:L975–L982Google Scholar
  215. 215.
    Kim JK, Lee WK, Lee EJ et al (1999) Mechanism of silica- and titanium dioxide-induced cytotoxicity in alveolar macrophages. J Toxicol Environ Health A 58:437–450Google Scholar
  216. 216.
    Falck GC, Lindberg HK, Suhonen S et al (2009) Genotoxic effects of nanosized and fine TiO2. Hum Exp Toxicol 28:339–352Google Scholar
  217. 217.
    Schulz J, Hohenberg H, Pflucker F et al (2002) Distribution of sunscreens on skin. Adv Drug Deliv Rev 54(Suppl 1):S157–S163Google Scholar
  218. 218.
    Kiss B, Biro T, Czifra G, Toth BI et al (2008) Investigation of micronized titanium dioxide penetration in human skin xenografts and its effect on cellular functions of human skin-derived cells. Exp Dermatol 17:659–667Google Scholar
  219. 219.
    Jin CY, Zhu BS, Wang XF et al (2008) Cytotoxicity of titanium dioxide nanoparticles in mouse fibroblast cells. Chem Res Toxicol 21:1871–1877Google Scholar
  220. 220.
    Griffitt RJ, Luo J, Gao J et al (2008) Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environ Toxicol Chem 27:1972–1978Google Scholar
  221. 221.
    Zhang X, Sun H, Zhang ZN et al (2007) Enhanced bioaccumulation of cadmium in carp in the presence of titanium dioxide nanoparticles. Chemosphere 67:160–166Google Scholar
  222. 222.
    Hao L, Wang Z, Xing B (2009) Effect of sub-acute exposure to TiO2 nanoparticles on oxidative stress and histopathological changes in Juvenile Carp (Cyprinus carpio). J Environ Sci (China) 21:1459–1466Google Scholar
  223. 223.
    Aruoja V, Dubourguier HC, Kasemets K et al (2009) Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci Total Environ 407:1461–1468Google Scholar
  224. 224.
    Hartmann NB, Von der Kammer F, Hofmann T et al (2009) Algal testing of titanium dioxide nanoparticles-testing considerations, inhibitory effects and modification of cadmium bioavailability. Toxicol 269:190–197Google Scholar
  225. 225.
    Gojova A, Guo B, Kota RS et al (2007) Induction of inflammation in vascular endothelial cells by metal oxide nanoparticles: effect of particle composition. Environ Health Perspect 115:403–409Google Scholar
  226. 226.
    Jeng HA, Swanson J (2006) Toxicity of metal oxide nanoparticles in mammalian cells. J Environ Sci Health A Tox Hazard Subst Environ Eng 41:2699–2711Google Scholar
  227. 227.
    Brunner TJ, Wick P, Manser P et al (2006) In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environ Sci Technol 40:4374–4381Google Scholar
  228. 228.
    Reddy KM, Feris K, Bell J et al (2007) Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl Phys Lett 90:2139021–2139023Google Scholar
  229. 229.
    Lanone S, Rogerieux F, Geys J et al (2009) Comparative toxicity of 24 manufactured nanoparticles in human alveolar epithelial and macrophage cell lines. Part Fibre Toxicol 6:14Google Scholar
  230. 230.
    Sayes CM, Reed KL, Warheit DB (2007) Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles. Toxicol Sci 97:163–180Google Scholar
  231. 231.
    Adams LK, Lyon DY, Alvarez PJ (2006) Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res 40:3527–3532Google Scholar
  232. 232.
    Huang Z, Zheng X, Yan D et al (2008) Toxicological effect of ZnO nanoparticles based on bacteria. Langmuir 24:4140–4144Google Scholar
  233. 233.
    Wu B, Wang Y, Lee YH, Horst A et al (2010) Comparative eco-toxicities of nano-ZnO particles under aquatic and aerosol exposure modes. Environ Sci Technol 44:1484–1489Google Scholar
  234. 234.
    Franklin NM, Rogers NJ, Apte SC et al (2007) Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ Sci Technol 41:8484–8490Google Scholar
  235. 235.
    Zhu X, Zhu L, Duan Z et al (2008) Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to Zebrafish (Danio rerio) early developmental stage. J Environ Sci Health A Tox Hazard Subst Environ Eng 43:278–284Google Scholar
  236. 236.
    Lee CW, Mahendra S, Zodrow K (2010) Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ Toxicol Chem 29:669–675Google Scholar
  237. 237.
    Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–250Google Scholar
  238. 238.
    Blinova I, Ivask A, Heinlaan M et al (2010) Ecotoxicity of nanoparticles of CuO and ZnO in natural water. Environ Pollut 158:41–47Google Scholar
  239. 239.
    Navarro E, Piccapietra F, Wagner B et al (2008) Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ Sci Technol 42:8959–8964Google Scholar
  240. 240.
    Farre M, Gajda-Schrantz K, Kantiani L et al (2009) Ecotoxicity and analysis of nanomaterials in the aquatic environment. Anal Bioanal Chem 393:81–95Google Scholar
  241. 241.
    Bai W, Zhang Z, Tian W et al (2009) Toxicity of zinc oxide nanoparticles to zebrafish embryo: a physicochemical study of toxicity mechanism. J Nanopart Res. doi: 10.1007/s11051-009-9740-9 Google Scholar
  242. 242.
    Wang H, Wick RL, Xing B (2009) Toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 to the nematode Caenorhabditis elegans. Environ Pollut 157:1171–1177Google Scholar
  243. 243.
    Deng X, Luan Q, Chen W et al (2009) Nanosized zinc oxide particles induce neural stem cell apoptosis. Nanotechnol 20:115101Google Scholar
  244. 244.
    Takeda A, Ohnuma M, Sawashita J et al (1997) Zinc transport in the rat olfactory system. Neurosci Lett 225:69–71Google Scholar
  245. 245.
    Persson E, Henriksson J, Tallkvist J et al (2003) Transport and subcellular distribution of intranasally administered zinc in the olfactory system of rats and pikes. Toxicol 191:97–108Google Scholar
  246. 246.
    Xia T, Kovochich M, Liong M et al (2008) Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2:2121–2134Google Scholar
  247. 247.
    Tracy MA, Ward KL, Firouzabadian L et al (1999) Factors affecting the degradation rate of poly(lactide-co-glycolide) microspheres in vivo and in vitro. Biomaterials 20:1057–1062Google Scholar
  248. 248.
    Nafee N, Schneider M, Schaefer UF et al (2009) Relevance of the colloidal stability of chitosan/PLGA nanoparticles on their cytotoxicity profile. Int J Pharm 381:130–139Google Scholar
  249. 249.
    Mishra V, Gupta U, Jain NK (2009) Surface-engineered dendrimers: a solution for toxicity issues. J Biomater Sci Polym Ed 20:141–166Google Scholar
  250. 250.
    Malik N, Wiwattanapatapee R, Klopsch R et al (2000) Dendrimers: relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of 125I-labelled polyamidoamine dendrimers in vivo. J Control Release 65:133–148Google Scholar
  251. 251.
    Heiden TC, Dengler E, Kao WJ et al (2007) Developmental toxicity of low generation PAMAM dendrimers in zebrafish. Toxicol Appl Pharmacol 225:70–79Google Scholar
  252. 252.
    Jevprasesphant R, Penny J, Jalal R et al (2003) The influence of surface modification on the cytotoxicity of PAMAM dendrimers. Int J Pharm 252:263–266Google Scholar
  253. 253.
    Chen HT, Neerman MF, Parrish AR et al (2004) Cytotoxicity, hemolysis, and acute in vivo toxicity of dendrimers based on melamine, candidate vehicles for drug delivery. J Am Chem Soc 126:10044–10048Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ndeke Musee
    • 1
    • 2
  • Lucky Sikhwivhilu
    • 3
  • Mary Gulumian
    • 4
    • 5
  1. 1.CSIRPretoriaSouth Africa
  2. 2.Department of Chemical EngineeringUniversity of JohannesburgJohannesburgSouth Africa
  3. 3.Advanced Materials DivisionDST/Mintek Nanotechnology Innovation CentreJohannesburgSouth Africa
  4. 4.NIOHJohannesburgSouth Africa
  5. 5.Haematology and Molecular MedicineUniversity of the WitwatersrandJohannesburgSouth Africa

Personalised recommendations